Problem
Given an array of integer write an algorithm to find 3 elements that sum to a given number k. In short a+b+c = k.
Example
Example 1:
Input: nums= [3,1,7,4,5,9,10] , k = 21;
Output:[[7, 4, 10]]
Follow up
What if Duplicates Not Allowed?
Solution
Method 1 - Brute Force
Use 3 nested loops and find the 3 elements which sum to k.
Code
Java
private static List<List<Integer>> threeSum(int[] nums, int target) {
List < Integer[] > result = new ArrayList < > ();
for (int i = 0; i < nums.length; i++) {
for (int j = i + 1; j < nums.length; j++) {
for (int k = j + 1; k < nums.length; k++) {
if (nums[i] + nums[j] + nums[k] == target) {
result.add(List.of(
nums[i], nums[j], nums[k]
));
}
}
}
}
return result;
}
Complexity
- ⏰ Time complexity:
O(n^3)
- 🧺 Space complexity:
O(1)
Method 2 - Sorting and Two Pointer Approach - Outputs duplicate triplets❌
- Sort the array.
- Use the other loop to fix the one element at a time
- Now problem is reduced to “Find a pair of numbers from an array whose sum equals k”
Code
Java
private List<List<Integer> threeSum(int[] nums, int target) {
List < Integer[] > result = new ArrayList < > ();
Arrays.sort(nums);
for (int i = 0; i < nums.length; i++) {
int left = i + 1;
int right = nums.length - 1;
while (left < right) {
if (nums[i] + nums[left] + nums[right] == target) {
result.add(List.of(nums[i], nums[left], nums[right]));
left++;
right--;
} else if (nums[i] + nums[left] + nums[right] < target) {
left++;
} else {
right--;
}
}
}
return result;
}
Complexity
- ⏰ Time complexity:
O(n^2)
- 🧺 Space complexity:
O(1)
Method 3 - Sorting and Two Pointer Approach - Fixes Duplicate Issue 🏆
If we need to fix the duplicate issue, easiest solution is sorting. Look at 2Sum 2 – Input array is sorted and 3Sum0 - Find three elements in an array that sum to a zero.
public List<List<Integer>> threeSum(int[] nums) {
List<List<Integer>> ans = new ArrayList<List<Integer>>();
Arrays.sort(nums);
for (int i = 0; i < nums.length; i++) {
if (i != 0 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1, right = nums.length - 1;
while (left < right) {
int currSum = nums[i] + nums[left] + nums[right];
if (currSum > target) {
right--;
} else if (currSum < target) {
left++;
} else {
List<Integer> triplet = List.of(nums[i], nums[left], nums[right]);
ans.add(triplet);
left++;
right--;
while (left < right && nums[left] == nums[left - 1]) {
left++;
}
while (left < right && nums[right] == nums[right + 1]) {
right--;
}
}
}
}
return ans;
}
Method 3 - Use Hashing 🏆
- Use the other loop to fix the one element at a time.
- Now required_sum is (with two elements) = k-fixed element.
- Create a HashSet, Iterate through rest of the array.
- For current_element, remain_value = required_sum – current_element.
- Check if remain_value in the HashSet, we have found our triplets else add current_element to the hashset.
Time Complexity: O(n^2)
Code
Java
private List<List<Integer>> threeSum(int[] nums, int target) {
List<List<Integer>> result = new ArrayList <> ();
for (int i = 0; i < nums.length; i++) {
int currentTarget = target - nums[i];
// now this reduces to two sum
Set < Integer > existingNums = new HashSet <> ();
for (int j = i + 1; j < nums.length; j++) {
if (existingNums.contains(currentTarget - nums[j])) {
result.add(List.of(nums[i], nums[j], currentTarget - nums[j]));
} else {
existingNums.add(nums[j]);
}
}
}
return result;
}
Complexity
- ⏰ Time complexity:
O(n^2)
- 🧺 Space complexity:
O(n)