Problem
Find all valid combinations of k
numbers that sum up to n
such that the following conditions are true:
- Only numbers
1
through9
are used. - Each number is used at most once.
Return a list of all possible valid combinations. The list must not contain the same combination twice, and the combinations may be returned in any order.
Examples
Example 1:
Input: k = 3, n = 7
Output:[[1,2,4]]
Explanation:
1 + 2 + 4 = 7
There are no other valid combinations.
Example 2:
Input: k = 3, n = 9
Output:[[1,2,6],[1,3,5],[2,3,4]]
Explanation:
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
There are no other valid combinations.
Example 3:
Input: k = 4, n = 1
Output: []
Explanation: There are no valid combinations.
Using 4 different numbers in the range [1,9], the smallest sum we can get is 1+2+3+4 = 10 and since 10 > 1, there are no valid combination.
Similar Problems
- Combination Sum 1 Problem
- Combination Sum 2 - Cant Reuse same element
- Combination Sum 4 - All permutations
Solution
Method 1 - Backtracking
public List<List<Integer>> combinationSum3(int k, int n) {
List<List<Integer>> ans = new ArrayList<> ();
helper(ans, new ArrayList<Integer>(), k, n, 1);
return ans;
}
public void helper(List<List<Integer>> ans, List<Integer> subAns, int k, int remain, int start) {
if (remain<0 || subAns.size() > k) {
return;
}
if (remain == 0 && subAns.size() == k) {
ans.add(new ArrayList<Integer> (subAns));
return;
}
for (int i = start; i<= 9; i++) {
subAns.add(i);
helper(ans, subAns, k, remain - i, i + 1);
subAns.remove(subAns.size() - 1);
}
}
Complexity
- ⏰ Time complexity:
O(9^k)
, as at each step our recursion tree is splitting into 9 steps - 🧺 Space complexity:
O(k)
, assuming recursion stack