Problem
Given three sequences A = $(a_1, a_2, \ldots, a_n)$ , B = $(b_1, b_2, \ldots, b_m)$, and C = $(c_1, c_2, \ldots, c_l)$, find the length of their longest common subsequence.
Examples
Example 1:
Input: a = [1, 2, 3], b = [2, 1, 3], c = [1, 3, 5]
Output: [1, 3]
Solution
Method 1 - DP
To solve this problem, we will use a dynamic programming approach similar to the classic longest common subsequence problem, but extended to three sequences.
Steps
- Define a 3D DP Table:
- Let
dp[i][j][k]
represent the length of the longest common subsequence of the firsti
elements of ( a ), the firstj
elements of ( b ), and the firstk
elements of ( c ).
- Let
- Initialize the DP Table:
- Initialize
dp[0][x][y] = 0
,dp[x][0][y] = 0
, anddp[x][y][0] = 0
for all validx
andy
.
- Initialize
- Fill the DP Table:
- Iterate through all elements of ( a ), ( b ), and ( c ). For each
i
,j
, andk
:- If
a[i-1]
,b[j-1]
, andc[k-1]
are equal, thendp[i][j][k] = dp[i-1][j-1][k-1] + 1
. - Otherwise, take the maximum of excluding one element from either
a
,b
, orc
.
- If
- Iterate through all elements of ( a ), ( b ), and ( c ). For each
Code
Java
class Solution {
public int longestCommonSubsequence3(int[] a, int[] b, int[] c) {
int n = a.length;
int m = b.length;
int l = c.length;
int[][][] dp = new int[n + 1][m + 1][l + 1];
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
for (int k = 1; k <= l; k++) {
if (a[i - 1] == b[j - 1] && a[i - 1] == c[k - 1]) {
dp[i][j][k] = dp[i - 1][j - 1][k - 1] + 1;
} else {
dp[i][j][k] = Math.max(Math.max(dp[i - 1][j][k], dp[i][j - 1][k]), dp[i][j][k - 1]);
}
}
}
}
return dp[n][m][l];
}
}
Python
class Solution:
def longest_common_subsequence3(self, a: List[int], b: List[int], c: List[int]) -> int:
n, m, l = len(a), len(b), len(c)
# Initialize the DP table
dp = [[[0] * (l + 1) for _ in range(m + 1)] for _ in range(n + 1)]
# Fill the DP table
for i in range(1, n + 1):
for j in range(1, m + 1):
for k in range(1, l + 1):
if a[i - 1] == b[j - 1] == c[k - 1]:
dp[i][j][k] = dp[i - 1][j - 1][k - 1] + 1
else:
dp[i][j][k] = max(dp[i - 1][j][k], dp[i][j - 1][k], dp[i][j][k - 1])
return dp[n][m][l]
Complexity
- ⏰ Time complexity:
O(n * m * l)
, wheren
,m
, andl
are the lengths of the sequences ( a ), ( b ), and ( c ) respectively. This is because we fill a 3D DP table. - 🧺 Space complexity:
O(n * m * l)
, due to storing the DP table.