Problem
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
Definiton
Lowest Common Ancestor Definition
Problems related to it - Lowest Common Ancestor Definition
Examples
Example 1:
graph TD; 6; 6 --- 2; 6 --- 8; 2 --- 0; 2 --- 4; 8 --- 7; 8 --- 9; 4 --- 3; 4 --- 5; style 2 fill:#FF9933 style 8 fill:#FF9933 style 6 fill:#3399FF
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
Output: 6
Explanation: The LCA of nodes 2 and 8 is 6.
Example 2:
graph TD; 6; 6 --- 2; 6 --- 8; 2 --- 0; 2 --- 4; 8 --- 7; 8 --- 9; 4 --- 3; 4 --- 5; style 2 fill:#FF9933 style 4 fill:#FF9933 style 2 fill:#3399FF
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
Output: 2
Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
Example 3:
Input: root = [2,1], p = 2, q = 1
Output: 2
Constraints
- All
Node.val
are unique. p != q
p
andq
will exist in the BST.
Solution
Here we will focus on BST.
Method 1 - Recursion or Iteration and Key Comparison
- Start will the root.
- If
root > p
androot > q
then LCA will be in left subtree. - If
root < p
androot < q
then LCA will be in right subtree. - If Step 2 and Step 3 is false then we are at the root which is lowest common ancestor, return it.
Code
Java
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root == null || p == null || q == null) {
return null;
}
if (root.val > p.val && root.val > q.val) {
return lowestCommonAncestor(root.left, p, q);
} else if (root.val < p.val && root.val < q.val) {
return lowestCommonAncestor(root.right, p, q);
} else {
return root;
}
}
Complexity
- ⏰ Time complexity:
O(log n)
- 🧺 Space complexity:
O(1)
What if it is Not Guaranteed That P and Q Will Be in Tree?
Then we can add isNodePresent function and call it before calling our LCA function:
// Function to check if a given node is present in a binary tree or not
public static boolean isNodePresent(Node root, Node node) {
// base case
if (root == null) {
return false;
}
// if the node is found, return true
if (root == node) {
return true;
}
// return true if a given node is found in the left or right subtree
return isNodePresent(root.left, node) || isNodePresent(root.right, node);
}
Driver code:
boolean pPresent = isNodePresent(root, p);
if (!pPresent) return null;
boolean qPresent = isNodePresent(root, q);
if (!qPresent) return null;
return lowestCommonAncestor(root, p, q);
Method 2 - Iterative
Code
Java
public Node LCA (Node root, Node p, Node q) {
while (root != null) {
// If root>p and root>q then lowest common ancestor will be in left subtree
if (root.val > p.val && root.val > q.val) {
root = root.left;
}
// If root<p and root<q then lowest common ancestor will be in right subtree
else if (root.val<= p.val && root.val<q.val) {
root = root.right;
}
// if I am here that means i am at the root which is lowest common ancestor
else {
return root;
}
}
return root;
}
Complexity
- ⏰ Time complexity:
O(log n)
- 🧺 Space complexity:
O(1)