Problem
You are given an array of events
where events[i] = [startDayi, endDayi]
. Every event i
starts at startDayi
and ends at endDayi
.
You can attend an event i
at any day d
where startTimei <= d <= endTimei
. You can only attend one event at any time d
.
Return the maximum number of events you can attend.
Examples
Example 1:
Input: events =[[1,2],[2,3],[3,4]]
Output: 3
Explanation: You can attend all the three events.
One way to attend them all is as shown.
Attend the first event on day 1.
Attend the second event on day 2.
Attend the third event on day 3.
Example 2:
Input: events=[[1,2],[2,3],[3,4],[1,2]]
Output: 4
Constraints:
1 <= events.length <= 105
events[i].length == 2
1 <= startDayi <= endDayi <= 105
Solution
Method 1 - Using Segment Tree
Code
Java
class Solution {
int[] tree;
public int maxEvents(int[][] events) {
Arrays.sort(events , (a, b) -> Integer.compare(a[1], b[1]));
int start = events[0][0];
int end = start ;
for(int i =0 ; i< events.length ; i++){
if(events[i][1] > end){
end = events[i][1];
}if(events[i][0] <start){
start = events[i][0];
}
}
createST(start,end);
buildST(0 , start, end);
int count = 0;
for(int[] range : events){
int day = query(0 , range[0], range[1], start , end);
if(day != Integer.MAX_VALUE && day >= range[0] && day <= range[1] ){
update(0, day , start, end );
count++;
}
}
return count;
}
public int update(int idx , int pos , int start , int end ){
//the day has been already used for other event . Making it unavailable
if(start == end ){
return tree[idx] = Integer.MAX_VALUE;
}else{
int mid = (start + end)/2;
//update the sub tree where pos is located
if(pos <= mid){
tree[idx]= Math.min(tree[2*idx+2],update(2*idx+1 ,pos,start,mid));
}else{
tree[idx] = Math.min(tree[2*idx+1],update(2*idx+2 ,pos,mid+1,end));
}
}
return tree[idx];
}
public int query(int idx , int qStart , int qEnd, int start , int end){
//full overlap
if(qStart <= start && qEnd >= end) {
return tree[idx];
}
int mid = (start+ end)/2;
// no overlap
if(qStart > end || qEnd < start){
return Integer.MAX_VALUE;
}
//partial overlap
int qOut = Math.min(query(2*idx+1 ,qStart,qEnd, start, mid), query(2*idx+2,qStart,qEnd , mid+1 , end));
return qOut;
}
public int buildST(int idx , int low , int hi){
if(low == hi){
tree[idx] = low;
}else if(low < hi){
int mid = (low + hi)/2;
tree[idx] = Math.min(buildST(2*idx+1,low,mid), buildST(2*idx+2,mid+1,hi));
}
return tree[idx];
}
public void createST(int start , int end ){
int len = end-start+1;
int height = (int)Math.ceil(Math.log(len)/Math.log(2));
int n =(int)Math.pow(2,height+1)-1;
tree = new int[n];
}
}