Problem
Given an m x n
binary matrix mat
, return the distance of the nearest 0
for each cell.
The distance between two adjacent cells is 1
.
Examples
Example 1: $$ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} $$
Input: mat =[[0,0,0],[0,1,0],[0,0,0]]
Output:[[0,0,0],[0,1,0],[0,0,0]]
Example 2: $$ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} $$
Input: mat =[[0,0,0],[0,1,0],[1,1,1]]
Output:[[0,0,0],[0,1,0],[1,2,1]]
Solution
Method 1 - BFS
- For convenience, let’s refer to cells with a value of 0 as zero-cell, those with a value of 1 as one-cell, and the distance to the nearest 0 as the distance.
- Initially, the distance for all zero-cells is 0.
- Using a similar approach to Topological Sort, we first process the zero-cells. We utilize a
queue
data structure to maintain the processing order, ensuring that cells with smaller distances are processed first. We then expand the unprocessed neighbors of the current cell and enqueue them. - This approach allows us to determine the minimum distance for all cells in the matrix.
Code
Java
public int[][] updateMatrix(int[][] matrix) {
int m = matrix.length;
if (m == 0) {
return matrix;
}
int n = matrix[0].length;
int[][] result = new int[m][n];
Queue<int[]> queue = new LinkedList<>(); // cells which has already been optimized
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (matrix[i][j] == 0) {
queue.add(new int[]{i, j});
} else {
result[i][j] = Integer.MAX_VALUE;
}
}
}
int[][] dirs = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
while (!queue.isEmpty()) {
int[] pair = queue.poll();
int r = pair[0];
int c = pair[1];
for (int[] dir : dirs) {
int newR = pair[0] + dir[0];
int newC = pair[1] + dir[1];
if (newR >= 0 && newR < m && newC >= 0 && newC < n) {
if (result[newR][newC] > result[r][c] + 1) { // check if neighbor is optimized or not
result[newR][newC] = result[r][c] + 1;
queue.add(new int[]{newR, newC});
}
}
}
}
return result;
}