Problem
Given an array nums
of n
integers, return an array of all the unique quadruplets [nums[a], nums[b], nums[c], nums[d]]
such that:
0 <= a, b, c, d < n
a
,b
,c
, andd
are distinct.nums[a] + nums[b] + nums[c] + nums[d] == target
You may return the answer in any order.
Similar Problem on Pramp
Your function should return an array of these numbers in an ascending order. If such a quadruplet doesn’t exist, return an empty array.
Note that there may be more than one quadruplet in arr
whose sum is s
. You’re asked to return the first one you encounter (considering the results are sorted).
Examples
Example 1:
Input:
nums = [1,0,-1,0,-2,2], target = 0
Output:
[[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]
Example 2:
Input:
nums = [2,2,2,2,2], target = 8
Output:
[[2,2,2,2]]
Solution
In Two Sum, we had a problem with sorting as we could have solved hte problem in O(n) time using hashmap. But here we already have O(n^3) if we use hash. So, we can sort.
We can also use solutions like 3Sum - Classic and Two Sum as well.
Also, we can implement kSum
Method 1 - Sorting
Algorithm
- Sort the array
- Run 1 outer loop from
0
ton-3
- Run inner loop from
n-1
to2
- Runner inner most loop using 2 pointers
l
andr
, l =i+1
, r=j-1
- Continue finding the quads till we are out of loops
Duplicates needs to handled.
Code
Java
public List<List<Integer>> fourSum(int[] nums, int target) {
Arrays.sort(nums);
List <List<Integer>> result = new ArrayList<>();
int length = nums.length;
if (length < 4) {
return result;
}
for (int i = 0; i < length - 3; i++) {
if (i != 0 && nums[i] == nums[i - 1]) {
continue;
}
for (int j = length - 1; j >= 2; j--) {
if (j != length - 1 && nums[j] == nums[j + 1]) {
continue;
}
int l = i + 1;
int r = j - 1;
int cur = nums[i] + nums[j];
int remainder = target - cur;
while (l < r) {
if (l != i + 1 && nums[l] == nums[l - 1]) {
l++;
continue;
}
if (r != j - 1 && nums[r] == nums[r + 1]) {
r--;
continue;
}
int temp = nums[l] + nums[r];
if (temp == remainder) {
result.add(List.of(nums[i], nums[l], nums[r], nums[j]));
l++;
r--;
} else if (temp < remainder) {
l++;
} else {
r--;
}
}
}
}
return result;
}
Method 2 - Using kSum
We can use generic kSum.
Code
Java
public List<List<Integer>> fourSum(int[] nums, int target) {
return kSum(nums, target, 4);
}
Complexity
- ⏰ Time complexity:
O(n^3)
- 🧺 Space complexity:
O(1)