Problem#
Given an array S
of n
integers, find all unique quadruplets (a, b, c, d)
in S
such that a + b + c + d = target
. The quadruplets must be in non-descending order, and the solution set must not contain duplicate quadruplets.
Note:
Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
The solution set must not contain duplicate quadruplets.
Examples#
Example 1:
1
2
3
Input: nums = [ 1 , 0 , - 1 , 0 , - 2 , 2 ]
Output: [[- 2 , - 1 , 1 , 2 ], [- 2 , 0 , 0 , 2 ], [- 1 , 0 , 0 , 1 ]]
Explanation: The pair ( 6 , 7 ) gives the highest product of 42.
Also make sure that the solution set is lexicographically sorted.
Solution[i] < Solution[j] iff Solution[i][0] < Solution[j][0] OR (Solution[i][0] == Solution[j][0] AND ... Solution[i][k] < Solution[j][k])
Solution#
Method 1 - Sorting and Two pointer technique#
Here is the approach:
Sort the Array : Start by sorting the array. This will help ensure the quadruplets are generated in non-descending order.
Nested Loop for Quadruplets : Use four nested loops to find quadruplets that sum to the target:
The outer two loops fix the first two elements of the quadruplet.
The inner two loops use a two-pointer approach to find the remaining two elements that sum to target - (a + b)
.
Check for Duplicates : Use sets or condition checks to avoid duplicate quadruplets.
Code#
Java
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
public class Solution {
public List< List< Integer>> fourSum (int [] nums, int target) {
List< List< Integer>> result = new ArrayList<> ();
Arrays.sort (nums);
for (int i = 0; i < nums.length - 3; i++ ) {
if (i > 0 && nums[ i] == nums[ i - 1] ) continue ; // Avoid duplicates
for (int j = i + 1; j < nums.length - 2; j++ ) {
if (j > i + 1 && nums[ j] == nums[ j - 1] ) continue ; // Avoid duplicates
int left = j + 1;
int right = nums.length - 1;
while (left < right) {
int sum = nums[ i] + nums[ j] + nums[ left] + nums[ right] ;
if (sum == target) {
result.add (Arrays.asList (nums[ i] , nums[ j] , nums[ left] , nums[ right] ));
left++ ;
right-- ;
while (left < right && nums[ left] == nums[ left - 1] ) left++ ; // Avoid duplicates
while (left < right && nums[ right] == nums[ right + 1] ) right-- ; // Avoid duplicates
} else if (sum < target) {
left++ ;
} else {
right-- ;
}
}
}
}
return result;
}
public static void main (String[] args) {
Solution sol = new Solution();
int [] nums = {1, 0, - 1, 0, - 2, 2};
int target = 0;
List< List< Integer>> quadruplets = sol.fourSum (nums, target);
for (List< Integer> quadruplet : quadruplets) {
System.out .println (quadruplet);
}
// Expected output:
// (-2, -1, 1, 2)
// (-2, 0, 0, 2)
// (-1, 0, 0, 1)
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
class Solution :
def fourSum (self, nums: List[int], target: int) -> List[List[int]]:
nums. sort()
result = []
for i in range(len(nums) - 3 ):
if i > 0 and nums[i] == nums[i - 1 ]:
continue # Avoid duplicates
for j in range(i + 1 , len(nums) - 2 ):
if j > i + 1 and nums[j] == nums[j - 1 ]:
continue # Avoid duplicates
left, right = j + 1 , len(nums) - 1
while left < right:
four_sum = nums[i] + nums[j] + nums[left] + nums[right]
if four_sum == target:
result. append([nums[i], nums[j], nums[left], nums[right]])
left += 1
right -= 1
while left < right and nums[left] == nums[left - 1 ]:
left += 1 # Avoid duplicates
while left < right and nums[right] == nums[right + 1 ]:
right -= 1 # Avoid duplicates
elif four_sum < target:
left += 1
else :
right -= 1
return result
# Example usage
sol = Solution()
nums = [1 , 0 , - 1 , 0 , - 2 , 2 ]
target = 0
quadruplets = sol. fourSum(nums, target)
for quadruplet in quadruplets:
print(quadruplet)
# Expected output:
# [-2, -1, 1, 2]
# [-2, 0, 0, 2]
# [-1, 0, 0, 1]
Complexity#
⏰ Time complexity: O(n^3)
, where n
is the number of elements in the array. This is because of the three nested loops iterating through the sorted array.
🧺 Space complexity: O(k)
, where k
is the number of unique quadruplets.