Problem
Given the root
of a binary tree, the value of a target node target
, and an integer k
, return an array of the values of all nodes that have a distance k
from the target node.
You can return the answer in any order.
Examples
graph TB; 3 --- 5 & 1; 5 --- 6 & 2; 1 --- 0 & 8; 2 --- 7 & 4; style 5 fill:#FF9933 style 1 fill:#138808 style 7 fill:#138808 style 4 fill:#138808
Input:
root = [3,5,1,6,2,0,8,null,null,7,4], target = 5, k = 2
Output:
[7,4,1]
Explanation: The nodes that are a distance 2 from the target node (with value 5) have values 7, 4, and 1.
Example 2:
Input:
root = [1], target = 1, k = 3
Output:
[]
Similar Problem
Nodes at Distance k from Leaf Nodes in Binary Tree Nodes at Distance k from root in Binary Tree
Solution
Method 1 - BFS on Undirected Graph
- First create undirected graph using adj list
- Then start the BFS on target node. Whenever we find nodes at k distance, just add them to answer
Code
Java
public List<Integer> distanceK(TreeNode root, TreeNode target, int k) {
Map <TreeNode, List<TreeNode>> g = new HashMap();
List<Integer> ans = new ArrayList<Integer>();
if (root == null || k <0) {
return ans;
}
buildGraph(g, root, null);
if (!g.containsKey(target)) {
return ans;
}
Set<TreeNode> visited = new HashSet<TreeNode>();
Queue<TreeNode> q = new LinkedList<TreeNode>();
q.add(target);
visited.add(target);
while (!q.isEmpty()) {
int size = q.size();
if (k == 0) {
for (int i = 0; i <size; i++) {
ans.add(q.poll().val);
}
return ans;
}
for (int i = 0; i <size; i++) {
TreeNode node = q.poll();
for (TreeNode nei: g.get(node)) {
if (visited.contains(nei)){
continue;
}
visited.add(nei);
q.add(nei);
}
}
k--;
}
return ans;
}
private void buildGraph(Map <TreeNode, List<TreeNode>> g, TreeNode node, TreeNode parent) {
if (node == null) {
return;
}
if (!g.containsKey(node)) {
g.put(node, new ArrayList<TreeNode>());
if (parent != null) {
g.get(node).add(parent);
g.get(parent).add(node);
}
buildGraph(g, node.left, node);
buildGraph(g, node.right, node);
}
}
Complexity
- Time:
O(N)
- Space:
O(N)
Method 2 - BFS and Parents Map
Similar to above solution:
- First create parent map of all the nodes. We dont need to create undirected graph, as parent-child relation is easily handled by tree structure.
- Then start the BFS on target node. Keep on adding the child and parents to the queue during BFS till we have distance K.
Code
Java
public List<Integer> distanceK(TreeNode root, TreeNode target, int K) {
List<Integer> ans = new ArrayList<>();
Map<TreeNode,TreeNode> parentsMap = new HashMap<>();
buildParentMap(root,root,parentsMap);//first root is node and second root is its parent considered
Set<TreeNode> visited = new HashSet<>(); //keep track of visited nodes
Queue<TreeNode> q = new LinkedList<>();//for BFS
q.add(target); //instead of root here we are adding target as we need to find from that node
visited.add(target); //also target node need to be visited first
int level = 0; //as we are using level order traversal k == level then we find all the nodes in queue
while(q.size()>0){
int size = q.size();
if(level == K) {
return buildListFromQueue(q);//elements remaining in queue will be nodes at dist
}
for(int i = 0; i < size; i++){ //k from target
TreeNode t = q.remove();
if(t.left != null && !visited.contains(t.left)){
q.add(t.left);
visited.add(t.left);
}
if(t.right != null && !visited.contains(t.right)){
q.add(t.right);
visited.add(t.right);
}
TreeNode parent = parentsMap.get(t);
if(!visited.contains(parent)){ //if parent is not visited
q.add(parent);//add parent to q
visited.add(parent); //mark it as visited
}
}
level++; //we check levelwise and each level covers 1 unit distance
}
return ans;
}
private List<Integer> buildListFromQueue(Queue<TreeNode> q){
List<Integer> lst = new ArrayList<>();
while(q.size()>0){
lst.add(q.remove().val);
}
return lst;
}
private void buildParentMap(TreeNode root,TreeNode parent,Map<TreeNode,TreeNode> parentsMap){
if(root == null) {
return;
}
parentsMap.put(root, parent);
buildParentMap(root.left,root, parentsMap);
buildParentMap(root.right,root, parentsMap);
}
Complexity
- Time:
O(N)
- Space:
O(N)