1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
import random
import math
from typing import List
class Solution:
def approximate_median_quickselect(self, nums: List[int]) -> int:
n = len(nums)
max_depth = int(math.log2(n)) + 1
return self._quickselect_approx(nums, 0, n-1, n//4, 3*n//4, 0, max_depth)
def _quickselect_approx(self, nums: List[int], left: int, right: int,
min_rank: int, max_rank: int, depth: int, max_depth: int) -> int:
if depth >= max_depth or right - left < 10:
# Fallback: sort small range and return middle
nums[left:right+1] = sorted(nums[left:right+1])
return nums[(left + right) // 2]
pivot_index = self._partition(nums, left, right)
pivot_rank = pivot_index + 1 # 1-based rank
if min_rank <= pivot_rank <= max_rank:
return nums[pivot_index]
if pivot_rank < min_rank:
return self._quickselect_approx(nums, pivot_index + 1, right,
min_rank, max_rank, depth + 1, max_depth)
else:
return self._quickselect_approx(nums, left, pivot_index - 1,
min_rank, max_rank, depth + 1, max_depth)
def _partition(self, nums: List[int], left: int, right: int) -> int:
# Random pivot selection
random_index = random.randint(left, right)
nums[random_index], nums[right] = nums[right], nums[random_index]
pivot = nums[right]
i = left - 1
for j in range(left, right):
if nums[j] <= pivot:
i += 1
nums[i], nums[j] = nums[j], nums[i]
nums[i + 1], nums[right] = nums[right], nums[i + 1]
return i + 1
|