Array Upper Bound
EasyUpdated: Oct 12, 2025
Practice on:
Problem
Write code that enhances all arrays such that you can call the upperBound() method on any array and it will return the last index of a given target number. nums is a sorted ascending array of numbers that may contain duplicates. If the target number is not found in the array, return -1.
Examples
Example 1:
Input: nums = [3,4,5], target = 5
Output: 2
Explanation: Last index of target value is 2
Example 2:
Input: nums = [1,4,5], target = 2
Output: -1
Explanation: Because there is no digit 2 in the array, return -1.
Example 3:
Input: nums = [3,4,6,6,6,6,7], target = 6
Output: 5
Explanation: Last index of target value is 5
Constraints:
1 <= nums.length <= 10^4-10^4 <= nums[i], target <= 10^4numsis sorted in ascending order.
Follow up: Can you write an algorithm with O(log n) runtime complexity?
Solution
Method 1 – Binary Search 1
Intuition
Since the array is sorted, we can use binary search to efficiently find the last occurrence of the target. Binary search helps us skip over large sections of the array, making the search much faster than a linear scan.
Approach
- Set two pointers,
l(left) andr(right), to the start and end of the array. - While
lis less than or equal tor:- Find the middle index
m. - If
nums[m]is less than or equal totarget, moveltom + 1(search right side). - Otherwise, move
rtom - 1(search left side).
- Find the middle index
- After the loop, check if
ris within bounds andnums[r]equalstarget. - If so, return
r(last index of target). Otherwise, return-1.
Code
JavaScript
Array.prototype.upperBound = function(target) {
let l = 0, r = this.length - 1, ans = -1;
while (l <= r) {
let m = Math.floor((l + r) / 2);
if (this[m] <= target) {
if (this[m] === target) ans = m;
l = m + 1;
} else {
r = m - 1;
}
}
return ans;
};
TypeScript
declare global {
interface Array<T> {
upperBound(target: number): number;
}
}
Array.prototype.upperBound = function(target: number): number {
let l = 0, r = this.length - 1, ans = -1;
while (l <= r) {
let m = Math.floor((l + r) / 2);
if (this[m] <= target) {
if (this[m] === target) ans = m;
l = m + 1;
} else {
r = m - 1;
}
}
return ans;
};
export {};
Complexity
- ⏰ Time complexity: O(log n)
- 🧺 Space complexity: O(1)