Problem

Table: Activity

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
+----------------+---------+
| Column Name | Type |
+----------------+---------+
| machine_id | int |
| process_id | int |
| activity_type | enum |
| timestamp | float |
+----------------+---------+

The table shows the user activities for a factory website.
(machine_id, process_id, activity_type) is the primary key (combination of columns with unique values) of this table.
machine_id is the ID of a machine.
process_id is the ID of a process running on the machine with ID machine_id.
activity_type is an ENUM (category) of type ('start', 'end').
timestamp is a float representing the current time in seconds.
'start' means the machine starts the process at the given timestamp and 'end' means the machine ends the process at the given timestamp.
The 'start' timestamp will always be before the 'end' timestamp for every (machine_id, process_id) pair.
It is guaranteed that each (machine_id, process_id) pair has a 'start' and 'end' timestamp.

There is a factory website that has several machines each running the same number of processes. Write a solution to find the average time each machine takes to complete a process.

The time to complete a process is the 'end' timestamp minus the 'start' timestamp. The average time is calculated by the total time to complete every process on the machine divided by the number of processes that were run.

The resulting table should have the machine_id along with the average time as processing_time, which should be rounded to 3 decimal places.

Return the result table in any order.

The result format is in the following example.

Examples

Example 1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Input: 
Activity table:
+------------+------------+---------------+-----------+
| machine_id | process_id | activity_type | timestamp |
+------------+------------+---------------+-----------+
| 0          | 0          | start         | 0.712     |
| 0          | 0          | end           | 1.520     |
| 0          | 1          | start         | 3.140     |
| 0          | 1          | end           | 4.120     |
| 1          | 0          | start         | 0.550     |
| 1          | 0          | end           | 1.550     |
| 1          | 1          | start         | 0.430     |
| 1          | 1          | end           | 1.420     |
| 2          | 0          | start         | 4.100     |
| 2          | 0          | end           | 4.512     |
| 2          | 1          | start         | 2.500     |
| 2          | 1          | end           | 5.000     |
+------------+------------+---------------+-----------+
Output: 
+------------+-----------------+
| machine_id | processing_time |
+------------+-----------------+
| 0          | 0.894           |
| 1          | 0.995           |
| 2          | 1.456           |
+------------+-----------------+
Explanation: 
There are 3 machines running 2 processes each.
Machine 0's average time is ((1.520 - 0.712) + (4.120 - 3.140)) / 2 = 0.894
Machine 1's average time is ((1.550 - 0.550) + (1.420 - 0.430)) / 2 = 0.995
Machine 2's average time is ((4.512 - 4.100) + (5.000 - 2.500)) / 2 = 1.456

Solution

Method 1 – SQL Group By and Join

Intuition

We need to pair each process’s start and end times, compute the duration for each process, and then average these durations for each machine. This can be done by self-joining the table on process and machine, filtering for start and end, and then aggregating.

Approach

  1. Self-join the Activity table to pair each process’s start and end times for each machine.
  2. For each pair, compute the duration as end.timestamp - start.timestamp.
  3. Group by machine_id and calculate the average duration, rounding to 3 decimal places.

Code

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
SELECT
  a.machine_id,
  ROUND(AVG(b.timestamp - a.timestamp), 3) AS processing_time
FROM Activity a
JOIN Activity b
  ON a.machine_id = b.machine_id
  AND a.process_id = b.process_id
  AND a.activity_type = 'start'
  AND b.activity_type = 'end'
GROUP BY a.machine_id;

Complexity

  • ⏰ Time complexity: O(N), where N is the number of rows in the Activity table (for joining and grouping).
  • 🧺 Space complexity: O(N) for storing intermediate results.