Under the grammar given below, strings can represent a set of lowercase words. Let R(expr) denote the set of words the expression represents.
The grammar can best be understood through simple examples:
Single letters represent a singleton set containing that word.
R("a") = {"a"}
R("w") = {"w"}
When we take a comma-delimited list of two or more expressions, we take the union of possibilities.
R("{a,b,c}") = {"a","b","c"}
R("{{a,b},{b,c}}") = {"a","b","c"} (notice the final set only contains each word at most once)
When we concatenate two expressions, we take the set of possible concatenations between two words where the first word comes from the first expression and the second word comes from the second expression.
For expressions e1, e2, ... , ek with k >= 2, we have R({e1, e2, ...}) = R(e1) ∪ R(e2) ∪ ...
For expressions e1 and e2, we have R(e1 + e2) = {a + b for (a, b) in R(e1) × R(e2)}, where + denotes concatenation, and × denotes the cartesian product.
Given an expression representing a set of words under the given grammar, return the sorted list of words that the expression represents.
The problem is to expand a string with nested braces and unions into all possible unique words. We use recursion to handle nested braces and sets to avoid duplicates. At each level, we parse the string, handling unions (,), concatenations, and nested braces.
classSolution {
funbraceExpansionII(s: String): List<String> {
fundfs(s: String, i: IntArray): Set<String> {
var cur = setOf("")
var res = setOf<String>()
while (i[0] < s.length && s[i[0]] !='}') {
when (s[i[0]]) {
'{'-> {
i[0]++val t = dfs(s, i)
cur = cur.flatMap { a -> t.map { b -> a + b } }.toSet()
}
','-> {
res = res + cur
cur = setOf("")
i[0]++ }
else-> {
cur = cur.map { it + s[i[0]] }.toSet()
i[0]++ }
}
}
res = res + cur
i[0]++return res
}
val ans = dfs(s, intArrayOf(0))
return ans.sorted()
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
classSolution:
defbraceExpansionII(self, s: str) -> list[str]:
defdfs(i: int) -> tuple[set[str], int]:
res, cur = set(), {""}
while i < len(s) and s[i] !='}':
if s[i] =='{':
t, i = dfs(i+1)
cur = {a+b for a in cur for b in t}
elif s[i] ==',':
res |= cur
cur = {""}
i +=1else:
cur = {a+s[i] for a in cur}
i +=1 res |= cur
return res, i+1 ans, _ = dfs(0)
return sorted(ans)