Build Array from Permutation
EasyUpdated: Aug 2, 2025
Practice on:
Problem
Given a zero-based permutation nums (0-indexed), build an array ans of the same length where ans[i] = nums[nums[i]] for each 0 <= i < nums.length and return it.
A zero-based permutation nums is an array of distinct integers from 0 to nums.length - 1 (inclusive).
Examples
Example 1:
Input: nums = [0,2,1,5,3,4]
Output: [0,1,2,4,5,3]Explanation: The array ans is built as follows:
ans = [nums[nums[0]], nums[nums[1]], nums[nums[2]], nums[nums[3]], nums[nums[4]], nums[nums[5]]]
= [nums[0], nums[2], nums[1], nums[5], nums[3], nums[4]]
= [0,1,2,4,5,3]
Example 2:
Input: nums = [5,0,1,2,3,4]
Output: [4,5,0,1,2,3]
Explanation: The array ans is built as follows:
ans = [nums[nums[0]], nums[nums[1]], nums[nums[2]], nums[nums[3]], nums[nums[4]], nums[nums[5]]]
= [nums[5], nums[0], nums[1], nums[2], nums[3], nums[4]]
= [4,5,0,1,2,3]
Constraints:
1 <= nums.length <= 10000 <= nums[i] < nums.length- The elements in
numsare distinct.
Follow-up: Can you solve it without using an extra space (i.e., O(1)
memory)?
Solution
Method 1 - Iterative
The given problem revolves around constructing a new array ans such that the value at each index i in ans is determined by nums[nums[i]]. Since the input nums is guaranteed to be a zero-based permutation, its elements are distinct integers ranging from 0 to nums.length - 1.
Approach
- Iterate Through
nums: For each indexi, computenums[nums[i]]and store it in the corresponding index of a new arrayans. - Output Result: Finally, return the filled
ans.
Code
Java
class Solution {
public int[] buildArray(int[] nums) {
int n = nums.length;
int[] ans = new int[n];
for (int i = 0; i < n; i++) {
ans[i] = nums[nums[i]];
}
return ans;
}
}
Python
class Solution:
def buildArray(self, nums: list[int]) -> list[int]:
n: int = len(nums)
ans: list[int] = [0] * n
for i in range(n):
ans[i] = nums[nums[i]]
return ans
Complexity
- ⏰ Time complexity:
O(n). The approach involves a single linear iteration through the arraynums. Hence, the time complexity isO(n). - 🧺 Space complexity:
O(n). We use a separate arrayansof the same size asnums. Thus, the space complexity is alsoO(n).