Problem
Given a zero-based permutation nums (0-indexed), build an array ans of the same length where ans[i] = nums[nums[i]] for each 0 <= i < nums.length and return it.
A zero-based permutation nums is an array of distinct integers from 0 to nums.length - 1 (inclusive).
Examples
Example 1:
 |  | 
Example 2:
 |  | 
Constraints:
1 <= nums.length <= 10000 <= nums[i] < nums.length- The elements in 
numsare distinct. 
Follow-up: Can you solve it without using an extra space (i.e., O(1)
memory)?
Solution
Method 1 - Iterative
The given problem revolves around constructing a new array ans such that the value at each index i in ans is determined by nums[nums[i]]. Since the input nums is guaranteed to be a zero-based permutation, its elements are distinct integers ranging from 0 to nums.length - 1.
Approach
- Iterate Through 
nums: For each indexi, computenums[nums[i]]and store it in the corresponding index of a new arrayans. - Output Result: Finally, return the filled 
ans. 
Code
 |  | 
 |  | 
Complexity
- ⏰ Time complexity: 
O(n). The approach involves a single linear iteration through the arraynums. Hence, the time complexity isO(n). - 🧺 Space complexity: 
O(n). We use a separate arrayansof the same size asnums. Thus, the space complexity is alsoO(n).