Problem#
You have a binary tree with a small defect. There is exactly one invalid node where its right child incorrectly points to another node at the same depth but to the invalid node ’s right .
Given the root of the binary tree with this defect, root
, return the root of the binary tree afterremoving this invalid node and every node underneath it (minus the node it incorrectly points to).
Custom testing:
The test input is read as 3 lines:
TreeNode root
int fromNode
(not available to correctBinaryTree
)
int toNode
(not available to correctBinaryTree
)
After the binary tree rooted at root
is parsed, the TreeNode
with value of fromNode
will have its right child pointer pointing to the TreeNode
with a value of toNode
. Then, root
is passed to correctBinaryTree
.
Examples#
Example 1:
1
2
3
Input: root = [ 1 , 2 , 3 ], fromNode = 2 , toNode = 3
Output: [ 1 , null , 3 ]
Explanation: The node with value 2 is invalid, so remove it.
Example 2:
1
2
3
Input: root = [ 8 , 3 , 1 , 7 , null , 9 , 4 , 2 , null , null , null , 5 , 6 ], fromNode = 7 , toNode = 4
Output: [ 8 , 3 , 1 , null , null , 9 , 4 , null , null , 5 , 6 ]
Explanation: The node with value 7 is invalid, so remove it and the node underneath it, node 2.
Constraints:
The number of nodes in the tree is in the range [3, 10^4]
.
-10^9 <= Node.val <= 10^9
All Node.val
are unique .
fromNode != toNode
fromNode
and toNode
will exist in the tree and will be on the same depth.
toNode
is to the right of fromNode
.
fromNode.right
is null
in the initial tree from the test data.
Solution#
Method 1 – BFS with HashSet 1#
Intuition#
The invalid node’s right child points to another node at the same depth but to its right. If we traverse the tree level by level (BFS) from right to left, we can use a set to track all nodes seen so far at the current level. When we find a node whose right child is already in the set, that node is the invalid one and should be removed.
Approach#
Use BFS to traverse the tree level by level, but process nodes from right to left at each level.
For each node, if its right child is in the set of seen nodes, mark this node as the invalid node to remove.
Remove the invalid node by setting its parent’s left or right pointer to null.
Return the root after removal.
Code#
Cpp
Go
Java
Kotlin
Python
Rust
Typescript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public :
TreeNode* correctBinaryTree(TreeNode* root) {
queue< TreeNode*> q;
unordered_set< TreeNode*> seen;
q.push(root);
while (! q.empty()) {
int sz = q.size();
vector< TreeNode*> level;
for (int i = 0 ; i < sz; ++ i) level.push_back(q.front()), q.pop();
for (int i = sz- 1 ; i >= 0 ; -- i) {
TreeNode* node = level[i];
if (node-> right && seen.count(node-> right)) {
node = nullptr ;
return root;
}
seen.insert(node);
if (node-> right) q.push(node-> right);
if (node-> left) q.push(node-> left);
}
}
return root;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
func correctBinaryTree (root * TreeNode ) * TreeNode {
type pair struct {node , parent * TreeNode ; isLeft bool }
q := []pair {{root , nil , false }}
for len(q ) > 0 {
next := []pair {}
seen := map [* TreeNode ]bool {}
for i := len(q )- 1 ; i >= 0 ; i -- {
p := q [i ]
node := p .node
if node .Right != nil && seen [node .Right ] {
if p .parent != nil {
if p .isLeft { p .parent .Left = nil } else { p .parent .Right = nil }
} else {
return nil
}
return root
}
seen [node ] = true
if node .Left != nil { next = append(next , pair {node .Left , node , true }) }
if node .Right != nil { next = append(next , pair {node .Right , node , false }) }
}
q = next
}
return root
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution {
public TreeNode correctBinaryTree (TreeNode root) {
Queue< TreeNode> q = new LinkedList<> ();
Set< TreeNode> seen = new HashSet<> ();
q.offer (root);
while (! q.isEmpty ()) {
int sz = q.size ();
List< TreeNode> level = new ArrayList<> ();
for (int i = 0; i < sz; ++ i) level.add (q.poll ());
for (int i = sz- 1; i >= 0; -- i) {
TreeNode node = level.get (i);
if (node.right != null && seen.contains (node.right )) {
node = null ;
return root;
}
seen.add (node);
if (node.right != null ) q.offer (node.right );
if (node.left != null ) q.offer (node.left );
}
}
return root;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
fun correctBinaryTree (root: TreeNode?): TreeNode? {
val q = ArrayDeque<TreeNode?>()
val seen = mutableSetOf<TreeNode?>()
q.add(root)
while (q.isNotEmpty()) {
val level = mutableListOf<TreeNode?>()
repeat(q.size) { level.add(q.removeFirst()) }
for (i in level.size-1 downTo 0 ) {
val node = level[i]
if (node?. right != null && node.right in seen) {
// Remove node
return root
}
seen.add(node)
node?. right?. let { q.add(it ) }
node?. left?. let { q.add(it ) }
}
}
return root
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution :
def correctBinaryTree (self, root: 'Optional[TreeNode]' ) -> 'Optional[TreeNode]' :
from collections import deque
q = deque([(root, None , False )]) # node, parent, is_left
while q:
next_level = []
seen = set()
for node, parent, is_left in reversed(q):
if node. right and node. right in seen:
if parent:
if is_left:
parent. left = None
else :
parent. right = None
return root
else :
return None
seen. add(node)
if node. left:
next_level. append((node. left, node, True ))
if node. right:
next_level. append((node. right, node, False ))
q = next_level
return root
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
use std::rc::Rc;
use std::cell::RefCell;
use std::collections::{HashSet, VecDeque};
impl Solution {
pub fn correct_binary_tree (root: Option< Rc< RefCell< TreeNode>>> ) -> Option< Rc< RefCell< TreeNode>>> {
if root.is_none() {
return root;
}
let mut queue = VecDeque::new();
queue.push_back((root.clone(), None, false )); // (node, parent, is_left_child)
while ! queue.is_empty() {
let mut next_level = VecDeque::new();
let mut seen = HashSet::new();
// Process current level from right to left
while let Some((node_opt, parent_opt, is_left)) = queue.pop_back() {
if let Some(node) = node_opt {
let node_borrow = node.borrow();
// Check if right child is already seen (invalid node)
if let Some(ref right_child) = node_borrow.right {
if seen.contains(& (right_child.as_ptr() as * const _)) {
// Found invalid node, remove it
drop(node_borrow); // Release borrow before mutation
if let Some(parent) = parent_opt {
let mut parent_borrow = parent.borrow_mut();
if is_left {
parent_borrow.left = None;
} else {
parent_borrow.right = None;
}
} else {
// Invalid node is root (shouldn't happen in this problem)
return None;
}
return root;
}
}
// Mark current node as seen
seen.insert(node.as_ptr() as * const _);
// Add children to next level
if let Some(ref left_child) = node_borrow.left {
next_level.push_back((Some(left_child.clone()), Some(node.clone()), true ));
}
if let Some(ref right_child) = node_borrow.right {
next_level.push_back((Some(right_child.clone()), Some(node.clone()), false ));
}
}
}
queue = next_level;
}
root
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
correctBinaryTree (root : TreeNode | null ): TreeNode | null {
let q : [TreeNode , TreeNode | null , boolean ][] = [[root ! , null , false ]];
while (q .length ) {
let next : [TreeNode , TreeNode | null , boolean ][] = [];
let seen = new Set <TreeNode >();
for (let i = q .length - 1 ; i >= 0 ; -- i ) {
let [node , parent , isLeft ] = q [i ];
if (node .right && seen .has (node .right )) {
if (parent ) {
if (isLeft ) parent .left = null ;
else parent .right = null ;
return root ;
} else {
return null ;
}
}
seen .add (node );
if (node .left ) next .push ([node .left , node , true ]);
if (node .right ) next .push ([node .right , node , false ]);
}
q = next ;
}
return root ;
}
}
Complexity#
⏰ Time complexity: O(n)
, where n is the number of nodes in the tree, as each node is visited once.
🧺 Space complexity: O(n)
, for the queue and set used in BFS.