Count Good Triplets in an Array
HardUpdated: Aug 2, 2025
Practice on:
Problem
You are given two 0-indexed arrays nums1 and nums2 of length n, both of which are permutations of [0, 1, ..., n - 1].
A good triplet is a set of 3 distinct values which are present in increasing order by position both in nums1 and nums2. In other words, if we consider pos1v as the index of the value v in nums1 and pos2v as the index of the value v in nums2, then a good triplet will be a set (x, y, z) where 0 <= x, y, z <= n - 1, such that pos1x < pos1y < pos1z and pos2x < pos2y < pos2z.
Return the total number of good triplets.
Examples
Example 1:
Input: nums1 = [2,0,1,3], nums2 = [0,1,2,3]
Output: 1
Explanation:
There are 4 triplets (x,y,z) such that pos1x < pos1y < pos1z. They are (2,0,1), (2,0,3), (2,1,3), and (0,1,3).
Out of those triplets, only the triplet (0,1,3) satisfies pos2x < pos2y < pos2z. Hence, there is only 1 good triplet.
Example 2:
Input: nums1 = [4,0,1,3,2], nums2 = [4,1,0,2,3]
Output: 4
Explanation: The 4 good triplets are (4,0,3), (4,0,2), (4,1,3), and (4,1,2).
Solution
Method 1 - Using Fenwick Tree
Here is the approach:
- Understanding the problem: We need to ensure that the values
x,y, andzappear in increasing order by position in both arraysnums1andnums2. Positions can be determined by creating a mapping of values to indices for both arrays. - Mapping positions: Since
nums1andnums2are permutations of[0, 1, ..., n-1], we can create a position mapping (e.g.,pos1fornums1andpos2fornums2). - Core logic: Once positions are mapped, the task reduces to counting all triplets
(x, y, z)such that:pos1[x] < pos1[y] < pos1[z]pos2[x] < pos2[y] < pos2[z]
- Algorithm:
- Compute positions for
nums1andnums2. - Use a combinatorial approach to check all triplets
(x, y, z)and validate the conditions. - To optimise, leverage techniques like Fenwick Tree or Binary Indexed Tree to count inversions efficiently.
- Compute positions for
Code
Java
class Solution {
public long goodTriplets(int[] nums1, int[] nums2) {
int n = nums1.length;
// Map positions in nums1
int[] pos1 = new int[n];
for (int i = 0; i < n; i++) {
pos1[nums1[i]] = i;
}
int[] pos2 = new int[n];
for (int i = 0; i < n; i++) {
pos2[i] = pos1[nums2[i]];
}
// Fenwick Tree to count increasing triplets
long ans = 0;
int[] ftLeft = new int[n + 1];
int[] ftRight = new int[n + 1];
// Initialize right Fenwick tree with counts
for (int v : pos2) {
fenwickUpdate(ftRight, v + 1, 1, n);
}
for (int v : pos2) {
fenwickUpdate(ftRight, v + 1, -1, n); // Remove current element from right tree
long leftCount = fenwickQuery(ftLeft, v); // Count smaller elements to the left
long rightCount =
fenwickQuery(ftRight, n) - fenwickQuery(ftRight, v); // Count larger elements to the right
ans += leftCount * rightCount; // Count triplets
fenwickUpdate(ftLeft, v + 1, 1, n); // Add current element to the left tree
}
return ans;
}
private void fenwickUpdate(int[] ft, int idx, int val, int size) {
while (idx <= size) {
ft[idx] += val;
idx += idx & -idx;
}
}
private int fenwickQuery(int[] ft, int idx) {
int s = 0;
while (idx > 0) {
s += ft[idx];
idx -= idx & -idx;
}
return s;
}
}
Python
class Solution:
def goodTriplets(self, nums1: List[int], nums2: List[int]) -> int:
n = len(nums1)
# Map positions in nums1
pos1 = {v: i for i, v in enumerate(nums1)}
pos2 = [pos1[v] for v in nums2]
# Fenwick Tree to count increasing triplets
def fenwick_update(ft: List[int], idx: int, val: int, size: int):
while idx <= size:
ft[idx] += val
idx += idx & -idx
def fenwick_query(ft: List[int], idx: int) -> int:
s = 0
while idx > 0:
s += ft[idx]
idx -= idx & -idx
return s
# Count triplets
ans = 0
ft_left = [0] * (n + 1)
ft_right = [0] * (n + 1)
for v in pos2:
fenwick_update(ft_right, v + 1, 1, n)
for v in pos2:
fenwick_update(ft_right, v + 1, -1, n)
left_count = fenwick_query(ft_left, v)
right_count = fenwick_query(ft_right, n) - fenwick_query(ft_right, v)
ans += left_count * right_count
fenwick_update(ft_left, v + 1, 1, n)
return ans
Complexity
- ⏰ Time complexity:
O(n^2 log n). The naive approach to checking all triplets isO(n^3). However, using advanced techniques, we can reduce it toO(n^2 log n)when using Fenwick Tree/Binary Indexed Tree for counting valid triplets. - 🧺 Space complexity:
O(n)for storing mappings and auxiliary data structures.