Problem#
Given a 0-indexed integer array nums
of size n
and two integers lower
and upper
, return the number of fair pairs .
A pair (i, j)
is fair if:
0 <= i < j < n
, and
lower <= nums[i] + nums[j] <= upper
Examples#
Example 1:
1
2
3
Input: nums = [ 0 , 1 , 7 , 4 , 4 , 5 ], lower = 3 , upper = 6
Output: 6
Explanation: There are 6 fair pairs: ( 0 , 3 ), ( 0 , 4 ), ( 0 , 5 ), ( 1 , 3 ), ( 1 , 4 ), and ( 1 , 5 ).
Example 2:
1
2
3
Input: nums = [ 1 , 7 , 9 , 2 , 5 ], lower = 11 , upper = 11
Output: 1
Explanation: There is a single fair pair: ( 2 , 3 ).
Solution#
Method 1 - Sorting + Binary Search#
Feels like binary search because we need to figure out lower bound and upper bound. So, for every nums[i]
, find out the range as if we can add nums[i]
into the range and the sum will be between [lower, upper]
. Thus, for every nums[i]
, find (lower - nums[i]
) and (upper - nums[i]
).
Here is the approach:
Step 1 : Sort the Array.
Why ? Ignore i < j
, we care that x + y
should lie within the range. Here, the index does not play any role.
Step 2 : For every element repeat Steps 3, 4, and 5.
Step 3 : Find the point until we can add nums[i]
and get the sum >= lower
, say j
.
Step 4 : Find the point until we can add nums[i]
and get the sum <= upper
, say k
.
Step 5 : We can get the answer from k - j
.
Code#
Java
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
class Solution {
public long countFairPairs (int [] nums, int lower, int upper) {
Arrays.sort (nums);
int n = nums.length ;
long ans = 0;
for (int i = 0; i < n; i++ ) {
int low = lowerBound(nums, i + 1, n - 1, lower - nums[ i] );
int high = upperBound(nums, i + 1, n - 1, upper - nums[ i] );
ans += (high - low + 1);
}
return ans;
}
private int lowerBound (int [] nums, int start, int end, int target) {
while (start <= end) {
int mid = start + (end - start) / 2;
if (nums[ mid] >= target) {
end = mid - 1;
} else {
start = mid + 1;
}
}
return start;
}
private int upperBound (int [] nums, int start, int end, int target) {
while (start <= end) {
int mid = start + (end - start) / 2;
if (nums[ mid] <= target) {
start = mid + 1;
} else {
end = mid - 1;
}
}
return end;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class Solution :
def countFairPairs (self, nums: List[int], lower: int, upper: int) -> int:
nums. sort()
n = len(nums)
ans = 0
for i in range(n):
lb = self. lowerBound(nums, i + 1 , n - 1 , lower - nums[i])
ub = self. upperBound(nums, i + 1 , n - 1 , upper - nums[i])
ans += (ub - lb + 1 )
return ans
def lowerBound (self, nums: List[int], start: int, end: int, target: int) -> int:
while start <= end:
mid = start + (end - start) // 2
if nums[mid] >= target:
end = mid - 1
else :
start = mid + 1
return start
def upperBound (self, nums: List[int], start: int, end: int, target: int) -> int:
while start <= end:
mid = start + (end - start) // 2
if nums[mid] <= target:
start = mid + 1
else :
end = mid - 1
return end
Complexity#
⏰ Time complexity: O(n log n)
. This is due to sorting the array and using binary search to find valid pairs.
🧺 Space complexity: O(1)
, as no extra space is used other than a few variables.