Count the Number of Incremovable Subarrays I
Problem
You are given a 0-indexed array of positive integers nums.
A subarray of nums is called incremovable if nums becomes strictly increasing on removing the subarray. For example, the subarray [3, 4] is an incremovable subarray of [5, 3, 4, 6, 7] because removing this subarray changes the array [5, 3, 4, 6, 7] to [5, 6, 7] which is strictly increasing.
Return the total number ofincremovable subarrays of nums.
Note that an empty array is considered strictly increasing.
A subarray is a contiguous non-empty sequence of elements within an array.
Examples
Example 1
Input: nums = [1,2,3,4]
Output: 10
Explanation: The 10 incremovable subarrays are: [1], [2], [3], [4], [1,2], [2,3], [3,4], [1,2,3], [2,3,4], and [1,2,3,4], because on removing any one of these subarrays nums becomes strictly increasing. Note that you cannot select an empty subarray.
Example 2
Input: nums = [6,5,7,8]
Output: 7
Explanation: The 7 incremovable subarrays are: [5], [6], [5,7], [6,5], [5,7,8], [6,5,7] and [6,5,7,8].
It can be shown that there are only 7 incremovable subarrays in nums.
Example 3
Input: nums = [8,7,6,6]
Output: 3
Explanation: The 3 incremovable subarrays are: [8,7,6], [7,6,6], and [8,7,6,6]. Note that [8,7] is not an incremovable subarray because after removing [8,7] nums becomes [6,6], which is sorted in ascending order but not strictly increasing.
Constraints
1 <= nums.length <= 501 <= nums[i] <= 50
Solution
Method 1 – Brute Force with Two Pointers
Intuition
A subarray is incremovable if, after removing it, the remaining array is strictly increasing. Since the array is small (n ≤ 50), we can check all possible subarrays by removing them and verifying if the result is strictly increasing.
Approach
- For every possible subarray nums[l:r] (0 ≤ l ≤ r < n):
- Remove nums[l:r+1] from nums.
- Check if the remaining array is strictly increasing.
- If yes, count this subarray as incremovable.
- Return the total count.
Code
C++
class Solution {
public:
int incremovableSubarrayCount(vector<int>& nums) {
int n = nums.size(), ans = 0;
for (int l = 0; l < n; ++l) {
for (int r = l; r < n; ++r) {
vector<int> arr;
for (int i = 0; i < l; ++i) arr.push_back(nums[i]);
for (int i = r+1; i < n; ++i) arr.push_back(nums[i]);
bool ok = true;
for (int i = 1; i < arr.size(); ++i) {
if (arr[i] <= arr[i-1]) ok = false;
}
if (ok) ans++;
}
}
return ans;
}
};
Java
class Solution {
public int incremovableSubarrayCount(int[] nums) {
int n = nums.length, ans = 0;
for (int l = 0; l < n; ++l) {
for (int r = l; r < n; ++r) {
List<Integer> arr = new ArrayList<>();
for (int i = 0; i < l; ++i) arr.add(nums[i]);
for (int i = r+1; i < n; ++i) arr.add(nums[i]);
boolean ok = true;
for (int i = 1; i < arr.size(); ++i) {
if (arr.get(i) <= arr.get(i-1)) ok = false;
}
if (ok) ans++;
}
}
return ans;
}
}
Python
class Solution:
def incremovableSubarrayCount(self, nums: list[int]) -> int:
n = len(nums)
ans = 0
for l in range(n):
for r in range(l, n):
arr = nums[:l] + nums[r+1:]
if all(arr[i] > arr[i-1] for i in range(1, len(arr))):
ans += 1
return ans
Complexity
- ⏰ Time complexity:
O(n^3), where n is the length of nums, since we check all subarrays and verify increasing order. - 🧺 Space complexity:
O(n), for the temporary array.