1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
class Solution:
def find_min_diff_subsets(self, nums: List[int]) -> Tuple[List[int], List[int]]:
total_sum = sum(nums)
n = len(nums)
# DP array to check possible subset sums up to total_sum//2
dp = [[False] * (total_sum // 2 + 1) for _ in range(n + 1)]
for i in range(n + 1):
dp[i][0] = True
# Fill DP table
for i in range(1, n + 1):
for j in range(1, total_sum // 2 + 1):
if nums[i - 1] <= j:
dp[i][j] = dp[i - 1][j] or dp[i - 1][j - nums[i - 1]]
else:
dp[i][j] = dp[i - 1][j]
# Find the maximum possible value closest to total_sum//2
closest_sum = 0
for j in range(total_sum // 2, -1, -1):
if dp[n][j]:
closest_sum = j
break
# Determine the two subsets
subset1 = []
subset2 = []
w = closest_sum
for i in range(n, 0, -1):
if not dp[i - 1][w]:
subset1.append(nums[i - 1])
w -= nums[i - 1]
else:
subset2.append(nums[i - 1])
return subset1, subset2
# Example usage
sol = Solution()
nums = [5, 10, 15, 20, 25]
subset1, subset2 = sol.find_min_diff_subsets(nums)
print(subset1) # Output: [25, 10]
print(subset2) # Output: [20, 15, 5]
|