Drop Missing Data
EasyUpdated: Aug 2, 2025
Practice on:
Problem
DataFrame students +-------------+--------+ | Column Name | Type | +-------------+--------+ | student_id | int | | name | object | | age | int | +-------------+--------+
There are some rows having missing values in the name column.
Write a solution to remove the rows with missing values.
The result format is in the following example.
Examples
Example 1
Input: +------------+---------+-----+
| student_id | name | age |
+------------+---------+-----+
| 32 | Piper | 5 |
| 217 | None | 19 |
| 779 | Georgia | 20 |
| 849 | Willow | 14 |
+------------+---------+-----+
Output: +------------+---------+-----+
| student_id | name | age |
+------------+---------+-----+
| 32 | Piper | 5 |
| 779 | Georgia | 20 |
| 849 | Willow | 14 |
+------------+---------+-----+
Explanation:
Student with id 217 havs empty value in the name column, so it will be removed.
## Solution
### Method 1 – pandas dropna
#### Intuition
To remove rows with missing values in the `name` column, we can use the `dropna` method in pandas, specifying the `name` column.
#### Approach
1. Use `dropna` on the DataFrame, specifying `subset=['name']`.
2. Return the resulting DataFrame.
#### Code
{{< code_tabs >}}
##### Python
```python
import pandas as pd
def drop_missing_data(students: pd.DataFrame) -> pd.DataFrame:
return students.dropna(subset=['name'])
Complexity
- ⏰ Time complexity:
O(n), where n is the number of rows in the DataFrame. - 🧺 Space complexity:
O(n), for the output DataFrame.