Input: +------------+---------+-----+| student_id | name | age |+------------+---------+-----+|32| Piper |5||217| None |19||779| Georgia |20||849| Willow |14|+------------+---------+-----+Output: +------------+---------+-----+| student_id | name | age |+------------+---------+-----+|32| Piper |5||779| Georgia |20||849| Willow |14|+------------+---------+-----+Explanation:
Student with id 217 havs empty value in the name column, so it will be removed.## Solution
### Method 1โ pandas dropna
#### Intuition
To remove rows with missing values in the `name` column, we can use the `dropna` method in pandas, specifying the `name` column.#### Approach
1. Use `dropna` on the DataFrame, specifying `subset=['name']`.2. Return the resulting DataFrame.#### Code
1
2
3
4
import pandas as pd
defdrop_missing_data(students: pd.DataFrame) -> pd.DataFrame:
return students.dropna(subset=['name'])
#### Complexity
-โฐ Time complexity:`O(n)`, where n is the number of rows in the DataFrame.-๐งบ Space complexity:`O(n)`,for the output DataFrame.