You may recall that an array arr is a mountain array if and only if:
arr.length >= 3
There exists some i with 0 < i < arr.length - 1 such that:
arr[0] < arr[1] < ... < arr[i - 1] < arr[i]
arr[i] > arr[i + 1] > ... > arr[arr.length - 1]
Given a mountain array mountainArr, return the minimumindex such that mountainArr.get(index) == target. If such an index does not exist, return -1.
You cannot access the mountain array directly. You may only access the array using a MountainArray interface:
MountainArray.get(k) returns the element of the array at index k (0-indexed).
MountainArray.length() returns the length of the array.
Submissions making more than 100 calls to MountainArray.get will be judged Wrong Answer. Also, any solutions that attempt to circumvent the judge will result in disqualification.
A mountain array increases to a peak and then decreases. We can use binary search to find the peak, then binary search for the target in both the increasing and decreasing parts.
classSolution {
public:int findInMountainArray(int target, MountainArray &arr) {
int n = arr.length();
int l =0, r = n -1;
while (l < r) {
int m = l + (r - l) /2;
if (arr.get(m) < arr.get(m +1)) l = m +1;
else r = m;
}
int peak = l;
l =0, r = peak;
while (l <= r) {
int m = l + (r - l) /2;
int v = arr.get(m);
if (v == target) return m;
if (v < target) l = m +1;
else r = m -1;
}
l = peak +1, r = n -1;
while (l <= r) {
int m = l + (r - l) /2;
int v = arr.get(m);
if (v == target) return m;
if (v > target) l = m +1;
else r = m -1;
}
return-1;
}
};
classSolution {
publicintfindInMountainArray(int target, MountainArray arr) {
int n = arr.length();
// Find peakint l = 0, r = n - 1;
while (l < r) {
int m = l + (r - l) / 2;
if (arr.get(m) < arr.get(m + 1)) l = m + 1;
else r = m;
}
int peak = l;
// Search in increasing part l = 0; r = peak;
while (l <= r) {
int m = l + (r - l) / 2;
int v = arr.get(m);
if (v == target) return m;
if (v < target) l = m + 1;
else r = m - 1;
}
// Search in decreasing part l = peak + 1; r = n - 1;
while (l <= r) {
int m = l + (r - l) / 2;
int v = arr.get(m);
if (v == target) return m;
if (v > target) l = m + 1;
else r = m - 1;
}
return-1;
}
}
interfaceMountainArray {
funget(index: Int): Int
funlength(): Int
}
classSolution {
funfindInMountainArray(target: Int, arr: MountainArray): Int {
val n = arr.length()
var l = 0var r = n - 1while (l < r) {
val m = l + (r - l) / 2if (arr.get(m) < arr.get(m + 1)) l = m + 1else r = m
}
val peak = l
l = 0; r = peak
while (l <= r) {
val m = l + (r - l) / 2val v = arr.get(m)
if (v == target) return m
if (v < target) l = m + 1else r = m - 1 }
l = peak + 1; r = n - 1while (l <= r) {
val m = l + (r - l) / 2val v = arr.get(m)
if (v == target) return m
if (v > target) l = m + 1else r = m - 1 }
return -1 }
}
classMountainArray:
defget(self, index: int) -> int: ...deflength(self) -> int: ...classSolution:
deffindInMountainArray(self, target: int, arr: MountainArray) -> int:
n = arr.length()
l, r =0, n -1while l < r:
m = (l + r) //2if arr.get(m) < arr.get(m +1):
l = m +1else:
r = m
peak = l
l, r =0, peak
while l <= r:
m = (l + r) //2 v = arr.get(m)
if v == target:
return m
if v < target:
l = m +1else:
r = m -1 l, r = peak +1, n -1while l <= r:
m = (l + r) //2 v = arr.get(m)
if v == target:
return m
if v > target:
l = m +1else:
r = m -1return-1
trait MountainArray {
fnget(&self, index: i32) -> i32;
fnlength(&self) -> i32;
}
impl Solution {
pubfnfind_in_mountain_array(target: i32, arr: &dyn MountainArray) -> i32 {
let n = arr.length();
let (mut l, mut r) = (0, n -1);
while l < r {
let m = l + (r - l) /2;
if arr.get(m) < arr.get(m +1) {
l = m +1;
} else {
r = m;
}
}
let peak = l;
l =0; r = peak;
while l <= r {
let m = l + (r - l) /2;
let v = arr.get(m);
if v == target {
return m;
}
if v < target {
l = m +1;
} else {
r = m -1;
}
}
l = peak +1; r = n -1;
while l <= r {
let m = l + (r - l) /2;
let v = arr.get(m);
if v == target {
return m;
}
if v > target {
l = m +1;
} else {
r = m -1;
}
}
-1 }
}