Problem
Given a binary tree, return the level of the tree with minimum sum.
OR
Given the root
of a binary tree, the level of its root is 1
, the level of its children is 2
, and so on.
Return the smallest level x
such that the sum of all the values of nodes at level x
is minimal.
Opposite of this problem - Maximum Level Sum of a Binary Tree.
Examples
Example 1:
graph TD A(1) --- B(7) & C(0) B --- D(7) & E("-8")
Input: root = [1,7,0,7,-8,null,null]
Output: 3
Explanation:
Level 1 sum = 1.
Level 2 sum = 7 + 0 = 7.
Level 3 sum = 7 + -8 = -1.
So we return the level with the minimum sum which is level 3.
Solution
Method 1 - Level Order Traversal
Code
Java
class Solution {
public int minLevelSum(TreeNode root) {
int min = Integer.MAX_VALUE, minLevel = 1;
Queue<TreeNode> q = new LinkedList<>();
q.offer(root);
for (int level = 1; !q.isEmpty(); ++level) {
int sum = 0;
int sz = q.size();
while (sz > 0) {
TreeNode n = q.poll();
sum += n.val;
if (n.left != null) {
q.offer(n.left);
}
if (n.right != null) {
q.offer(n.right);
}
}
if (min > sum) {
min = sum;
minLevel = level;
}
}
return minLevel;
}
}
Python
class Solution {
public int minLevelSum(TreeNode root) {
int min = Integer.MAX_VALUE, minLevel = 1;
Queue<TreeNode> q = new LinkedList<>();
q.offer(root);
for (int level = 1; !q.isEmpty(); ++level) {
int sum = 0;
int sz = q.size();
while (sz > 0) {
TreeNode n = q.poll();
sum += n.val;
if (n.left != null) {
q.offer(n.left);
}
if (n.right != null) {
q.offer(n.right);
}
}
if (min > sum) {
min = sum;
minLevel = level;
}
}
return minLevel;
}
}
Complexity
- ⏰ Time complexity:
O(n)
- 🧺 Space complexity:
O(n)
(at max n elements will be stored by the queue)