Input:
matrix =[["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]Output: 6Explanation: The maximal rectangle is shown in the above picture.
classSolution {
publicintmaximalRectangle(char[][] matrix) {
if (matrix ==null|| matrix.length== 0) return 0;
int rows = matrix.length;
int cols = matrix[0].length;
int maxArea = 0;
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
if (matrix[i][j]=='0') continue;
for (int p = i; p < rows; p++) {
for (int q = j; q < cols; q++) {
if (matrix[p][q]=='0') continue;
if (isAllOnes(matrix, i, j, p, q)) {
int area = (p - i + 1) * (q - j + 1);
maxArea = Math.max(maxArea, area);
}
}
}
}
}
return maxArea;
}
privatebooleanisAllOnes(char[][] matrix, int startX, int startY, int endX, int endY) {
for (int x = startX; x <= endX; x++) {
for (int y = startY; y <= endY; y++) {
if (matrix[x][y]=='0') {
returnfalse;
}
}
}
returntrue;
}
}
classSolution:
defmaximalRectangle(self, matrix: List[List[str]]) -> int:
ifnot matrix ornot matrix[0]:
return0 rows = len(matrix)
cols = len(matrix[0])
max_area =0for i in range(rows):
for j in range(cols):
if matrix[i][j] =='0':
continuefor p in range(i, rows):
for q in range(j, cols):
if matrix[p][q] =='0':
continueif self.is_all_ones(matrix, i, j, p, q):
area = (p - i +1) * (q - j +1)
max_area = max(max_area, area)
return max_area
defis_all_ones(self, matrix: List[List[str]], start_x: int, start_y: int, end_x: int, end_y: int) -> bool:
for x in range(start_x, end_x +1):
for y in range(start_y, end_y +1):
if matrix[x][y] =='0':
returnFalsereturnTrue
Dynamic Programming Table: We use a heights array where heights[j] represents the number of consecutive 1s ending at column j for the current row i.
Histogram Algorithm: For each row treated as the base, compute the largest rectangle area in the histogram represented by heights using a stack-based approach.
Area Calculation: The maximum area found while iterating through rows is the answer.
Lets see how to convert the matrix in histogram.
Lets consider the matrix:
1
2
3
4
110010011111111110001100
Convert first row to histogram, our heights for row[0]:
1
2
hist =110010area =2(h =1, l =2)
First row is easy. For subsequent rows, whenver we see last row or base row having 0, we make our height 0, else we will sum up the pillar or column values.
Now, for row[2]:
1
2
hist =021121area =4(h =1, l =4)
For row[3]:
1
2
132230area =8(h =2, l =4)
Finally row[4]:
1
2
003300area =6(h =3, l =2)
As, we can see row[3] histogram gave us our maximal area, that is the answer:
classSolution:
defmaximalRectangle(self, matrix: List[List[str]]) -> int:
ifnot matrix:
return0 rows, cols = len(matrix), len(matrix[0])
heights: List[int] = [0] * cols
ans: int =0for i in range(rows):
for j in range(cols):
heights[j] = heights[j] +1if matrix[i][j] =='1'else0 ans = max(ans, self.largestRectangleArea(heights))
return ans
deflargestRectangleArea(self, heights: List[int]) -> int:
stack: List[int] = []
max_area: int =0 len_heights: int = len(heights)
for i in range(len_heights +1):
h = heights[i] if i < len_heights else0while stack and h < heights[stack[-1]]:
height: int = heights[stack.pop()]
width: int = i ifnot stack else i - stack[-1] -1 max_area = max(max_area, height * width)
stack.append(i)
return max_area
⏰ Time complexity: O(rows * cols) because we iterate through each element of the matrix once and compute the area for each row-constructed histogram in O(cols).
🧺 Space complexity: O(cols) for the heights array and the stack used in the histogram calculation.
The dynamic programming (DP) solution processes the matrix row by row, starting from the first row. The maximal rectangle area at row i and column j can be calculated as [right(i,j) - left(i,j)] * height(i,j). The variables left, right, and height can be updated using information from both the current row and the previous row, making this a DP solution. The transition equations are:
left(i, j) = max(left(i-1, j), cur_left) where cur_left is derived from the current row.
right(i, j) = min(right(i-1, j), cur_right) where cur_right is derived from the current row.