Problem
Given the root
of a binary tree, the level of its root is 1
, the level of its children is 2
, and so on.
Return the smallest level x
such that the sum of all the values of nodes at level x
is maximal.
Opposite of this problem - Level of Binary Tree with minimum sum.
Examples
Example 1:
graph TD A(1) --- B(7) & C(0) B --- D(7) & E("-8")
Input: root = [1,7,0,7,-8,null,null]
Output: 2
Explanation:
Level 1 sum = 1.
Level 2 sum = 7 + 0 = 7.
Level 3 sum = 7 + -8 = -1.
So we return the level with the maximum sum which is level 2.
Example 2:
Input: root = [989,null,10250,98693,-89388,null,null,null,-32127]
Output: 2
Solution
Method 1 - Level Order Traversal
Use BFS to find the sum of each level, then locate the level with largest sum.
Code
Java
public int maxLevelSum(TreeNode root) {
int max = Integer.MIN_VALUE, maxLevel = 1;
Queue<TreeNode> q = new LinkedList<>();
q.offer(root);
for (int level = 1; !q.isEmpty(); ++level) {
int sum = 0;
int sz = q.size();
while (sz > 0) {
TreeNode n = q.poll();
sum += n.val;
if (n.left != null) {
q.offer(n.left);
}
if (n.right != null) {
q.offer(n.right);
}
}
if (max < sum) {
max = sum;
maxLevel = level;
}
}
return maxLevel;
}
Complexity
- Time:
O(n)
- Space:
O(n)
(at max n elements will be stored by the queue)