Problem#
Given the root
of a binary tree, the level of its root is 1
, the level of its children is 2
, and so on.
Return the smallest level x
such that the sum of all the values of nodes at level x
is maximal .
Opposite of this problem - Level of Binary Tree with minimum sum .
Examples#
Example 1:
graph TD
A(1) --- B(7) & C(0)
B --- D(7) & E("-8")
1
2
3
4
5
6
7
Input: root = [ 1 , 7 , 0 , 7 ,- 8 , null , null ]
Output: 2
Explanation:
Level 1 sum = 1.
Level 2 sum = 7 + 0 = 7.
Level 3 sum = 7 + - 8 = - 1.
So we return the level with the maximum sum which is level 2.
Example 2:
1
2
Input: root = [ 989 , null , 10250 , 98693 ,- 89388 , null , null , null ,- 32127 ]
Output: 2
Solution#
Method 1 - Level Order Traversal#
Use BFS to find the sum of each level, then locate the level with largest sum.
Code#
Java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public int maxLevelSum (TreeNode root) {
int max = Integer.MIN_VALUE , maxLevel = 1;
Queue< TreeNode> q = new LinkedList<> ();
q.offer (root);
for (int level = 1; ! q.isEmpty (); ++ level) {
int sum = 0;
int sz = q.size ();
while (sz > 0) {
TreeNode n = q.poll ();
sum += n.val ;
if (n.left != null ) {
q.offer (n.left );
}
if (n.right != null ) {
q.offer (n.right );
}
}
if (max < sum) {
max = sum;
maxLevel = level;
}
}
return maxLevel;
}
Complexity#
Time: O(n)
Space: O(n)
(at max n elements will be stored by the queue)