Problem#  You are given an array nums of n positive integers.
You can perform two types of operations on any element of the array any number of times:
If the element is even , divide  it by 2.For example, if the array is [1,2,3,4], then you can do this operation on the last element, and the array will be [1,2,3,2].  If the element is odd , multiply  it by 2.For example, if the array is [1,2,3,4], then you can do this operation on the first element, and the array will be [2,2,3,4].  The deviation  of the array is the maximum difference  between any two elements in the array.
Return the minimum deviation  the array can have after performing some number of operations. 
Examples#  Example 1: 
1
 2
 3
 4
 5
 Input:
 nums = [1,2,3,4]
 Output:
  1
 Explanation: You can transform the array to [1,2,3,2], then to [2,2,3,2], then the deviation will be 3 - 2 = 1.
 
Example 2: 
1
 2
 3
 4
 5
 Input:
 nums = [4,1,5,20,3]
 Output:
  3
 Explanation: You can transform the array after two operations to [4,2,5,5,3], then the deviation will be 5 - 2 = 3.
 
Example 3: 
1
 2
 3
 4
 Input:
 nums = [2,10,8]
 Output:
  3
 
Solution#  Method 1 – Greedy with Max-Heap#  Intuition#  The key idea is to maximize the minimum value and minimize the maximum value in the array. By always reducing the current maximum (by dividing even numbers by 2), we can try to bring all numbers closer together. Odd numbers can only be increased once (by multiplying by 2), so we first normalize all numbers to their possible maximums, then repeatedly reduce the largest.
Approach#  For each number in nums, if it’s odd, multiply by 2 (so all numbers are even and can be reduced). Insert all numbers into a max-heap. Track the minimum value among all numbers. While the maximum number is even: Pop the maximum from the heap. Update the answer with the difference between max and min. Divide the max by 2 and push it back. Update the minimum if needed. After the loop, check the final deviation. Return the minimum deviation found. Code#  
Cpp
 
Go
 
Java
 
Kotlin
 
Python
 
Rust 
 1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 class  Solution  {
public : 
   int  minimumDeviation(vector< int >&  nums) {
       priority_queue< int >  pq;
       int  mn =  INT_MAX, ans =  INT_MAX;
       for  (int  n : nums) {
         if  (n %  2 ) n *=  2 ;
         pq.push(n);
         mn =  min(mn, n);
       }
       while  (pq.top() %  2  ==  0 ) {
         int  mx =  pq.top(); pq.pop();
         ans =  min(ans, mx -  mn);
         mx /=  2 ;
         pq.push(mx);
         mn =  min(mn, mx);
       }
       ans =  min(ans, pq.top() -  mn);
       return  ans;
    }
 }; 
 1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 func  minimumDeviation (nums  []int ) int  {
   h  :=  & IntHeap {}
    mn  :=  int(1e9 )
    for  _ , n  :=  range  nums  {
       if  n % 2  ==  1  {
         n  *=  2 
       }
       heap .Push (h , - n )
       if  n  < mn  {
         mn  = n 
       }
    }
    ans  :=  int(1e9 )
    for  {
       mx  :=  - heap .Pop (h ).(int )
       if  ans  > mx - mn  {
         ans  = mx  -  mn 
       }
       if  mx % 2  ==  1  {
         break 
       }
       mx  /=  2 
       if  mx  < mn  {
         mn  = mx 
       }
       heap .Push (h , - mx )
    }
    return  ans 
 }
 
 // IntHeap implements heap.Interface for negative values (max-heap) 
type  IntHeap  []int 
func  (h  IntHeap ) Len () int            { return  len(h ) }
func  (h  IntHeap ) Less (i , j  int ) bool  { return  h [i ] < h [j ] }
func  (h  IntHeap ) Swap (i , j  int )      { h [i ], h [j ] = h [j ], h [i ] }
func  (h  * IntHeap ) Push (x  interface {}) { * h  = append(* h , x .(int )) }
func  (h  * IntHeap ) Pop () interface {} {
   old  :=  * h 
    n  :=  len(old )
    x  :=  old [n - 1 ]
    * h  = old [:n - 1 ]
    return  x 
 } 
 1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 class  Solution  {
   public  int  minimumDeviation (int []  nums) {
       PriorityQueue< Integer>  pq =  new  PriorityQueue<> (Collections.reverseOrder ());
       int  mn =  Integer.MAX_VALUE , ans =  Integer.MAX_VALUE ;
       for  (int  n : nums) {
         if  (n %  2 ==  1) n *=  2;
         pq.offer (n);
         mn =  Math.min (mn, n);
       }
       while  (pq.peek () %  2 ==  0) {
         int  mx =  pq.poll ();
         ans =  Math.min (ans, mx -  mn);
         mx /=  2;
         pq.offer (mx);
         mn =  Math.min (mn, mx);
       }
       ans =  Math.min (ans, pq.peek () -  mn);
       return  ans;
    }
 } 
 1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 class  Solution  {
   fun  minimumDeviation (nums: IntArray): Int {
       val  pq = java.util.PriorityQueue<Int>(compareByDescending { it  })
       var  mn = Int .MAX_VALUE
       for  (n in  nums) {
         val  v = if  (n % 2  ==  1 ) n * 2  else  n
         pq.add(v)
         mn = minOf(mn, v)
       }
       var  ans = Int .MAX_VALUE
       while  (pq.peek() % 2  ==  0 ) {
         val  mx = pq.poll()
         ans = minOf(ans, mx - mn)
         val  half = mx / 2 
         pq.add(half)
         mn = minOf(mn, half)
       }
       ans = minOf(ans, pq.peek() - mn)
       return  ans
    }
 } 
 1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 class  Solution :
   def  minimumDeviation (self, nums: list[int]) ->  int:
       import  heapq
       h: list[int] =  []
       mn: int =  float('inf' )
       for  n in  nums:
         if  n %  2 :
            n *=  2 
         heapq. heappush(h, - n)
         mn =  min(mn, n)
       ans: int =  float('inf' )
       while  True :
         mx =  - heapq. heappop(h)
         ans =  min(ans, mx -  mn)
         if  mx %  2 :
            break 
         mx //=  2 
         mn =  min(mn, mx)
         heapq. heappush(h, - mx)
       return  ans 
 1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 impl  Solution {
   pub  fn  minimum_deviation (nums: Vec< i32 > ) -> i32  {
       use  std::collections::BinaryHeap;
       let  mut  heap =  BinaryHeap::new();
       let  mut  mn =  i32 ::MAX ;
       for  mut  n in  nums {
         if  n %  2  ==  1  { n *=  2 ; }
         heap.push(n);
         mn =  mn.min(n);
       }
       let  mut  ans =  i32 ::MAX ;
       while  let  Some(mx) =  heap.peek().copied() {
         ans =  ans.min(mx -  mn);
         if  mx %  2  ==  1  { break ; }
         let  mx =  heap.pop().unwrap() /  2 ;
         mn =  mn.min(mx);
         heap.push(mx);
       }
       ans
    }
 } 
Complexity#  Time complexity: O(N log N) (each heap operation is log N, up to 2 * N operations) Space complexity: O(N) (for the heap)