Minimum Consecutive Cards to Pick Up
MediumUpdated: Aug 2, 2025
Practice on:
Problem
You are given an integer array cards where cards[i] represents the
value of the ith card. A pair of cards are matching if the cards have the same value.
Return theminimum number of consecutive cards you have to pick up to have a pair of matching cards among the picked cards. If it is impossible to have matching cards, return -1.
Examples
Example 1
Input: cards = [3,4,2,3,4,7]
Output: 4
Explanation: We can pick up the cards [3,4,2,3] which contain a matching pair of cards with value 3. Note that picking up the cards [4,2,3,4] is also optimal.
Example 2
Input: cards = [1,0,5,3]
Output: -1
Explanation: There is no way to pick up a set of consecutive cards that contain a pair of matching cards.
Constraints
1 <= cards.length <= 10^50 <= cards[i] <= 10^6
Solution
Method 1 – Hash Map for Last Seen Index
Intuition
To find the minimum consecutive cards with a matching pair, track the last index where each card value was seen. When a duplicate is found, calculate the distance and update the minimum.
Approach
- Use a hash map to store the last index of each card value.
- Iterate through the array:
- If the card value was seen before, calculate the distance to the previous index and update the answer.
- Update the last seen index for the card value.
- If no matching pair is found, return -1.
Code
C++
class Solution {
public:
int minimumCardPickup(vector<int>& cards) {
unordered_map<int, int> last;
int ans = INT_MAX;
for (int i = 0; i < cards.size(); ++i) {
if (last.count(cards[i])) {
ans = min(ans, i - last[cards[i]] + 1);
}
last[cards[i]] = i;
}
return ans == INT_MAX ? -1 : ans;
}
};
Go
func minimumCardPickup(cards []int) int {
last := make(map[int]int)
ans := len(cards) + 1
for i, v := range cards {
if idx, ok := last[v]; ok {
if i-idx+1 < ans {
ans = i - idx + 1
}
}
last[v] = i
}
if ans > len(cards) {
return -1
}
return ans
}
Java
class Solution {
public int minimumCardPickup(int[] cards) {
Map<Integer, Integer> last = new HashMap<>();
int ans = Integer.MAX_VALUE;
for (int i = 0; i < cards.length; i++) {
if (last.containsKey(cards[i])) {
ans = Math.min(ans, i - last.get(cards[i]) + 1);
}
last.put(cards[i], i);
}
return ans == Integer.MAX_VALUE ? -1 : ans;
}
}
Kotlin
class Solution {
fun minimumCardPickup(cards: IntArray): Int {
val last = mutableMapOf<Int, Int>()
var ans = Int.MAX_VALUE
for (i in cards.indices) {
if (last.containsKey(cards[i])) {
ans = minOf(ans, i - last[cards[i]]!! + 1)
}
last[cards[i]] = i
}
return if (ans == Int.MAX_VALUE) -1 else ans
}
}
Python
def minimum_card_pickup(cards: list[int]) -> int:
last: dict[int, int] = {}
ans: int = float('inf')
for i, v in enumerate(cards):
if v in last:
ans = min(ans, i - last[v] + 1)
last[v] = i
return -1 if ans == float('inf') else ans
Rust
impl Solution {
pub fn minimum_card_pickup(cards: Vec<i32>) -> i32 {
use std::collections::HashMap;
let mut last = HashMap::new();
let mut ans = i32::MAX;
for (i, &v) in cards.iter().enumerate() {
if let Some(&idx) = last.get(&v) {
ans = ans.min((i as i32) - idx + 1);
}
last.insert(v, i as i32);
}
if ans == i32::MAX { -1 } else { ans }
}
}
TypeScript
class Solution {
minimumCardPickup(cards: number[]): number {
const last: Record<number, number> = {};
let ans = cards.length + 1;
for (let i = 0; i < cards.length; i++) {
if (last[cards[i]] !== undefined) {
ans = Math.min(ans, i - last[cards[i]] + 1);
}
last[cards[i]] = i;
}
return ans > cards.length ? -1 : ans;
}
}
Complexity
- ⏰ Time complexity:
O(n), where n is the length of the array, as each card is processed once. - 🧺 Space complexity:
O(n), for storing last seen indices in the hash map.