Minimum Moves to Reach Target Score
MediumUpdated: Aug 2, 2025
Practice on:
Problem
You are playing a game with integers. You start with the integer 1 and you want to reach the integer target.
In one move, you can either:
- Increment the current integer by one (i.e.,
x = x + 1). - Double the current integer (i.e.,
x = 2 * x).
You can use the increment operation any number of times, however, you can only use the double operation at most maxDoubles times.
Given the two integers target and maxDoubles, return the minimum number of moves needed to reachtarget starting with1.
Examples
Example 1
Input: target = 5, maxDoubles = 0
Output: 4
Explanation: Keep incrementing by 1 until you reach target.
Example 2
Input: target = 19, maxDoubles = 2
Output: 7
Explanation: Initially, x = 1
Increment 3 times so x = 4
Double once so x = 8
Increment once so x = 9
Double again so x = 18
Increment once so x = 19
Example 3
Input: target = 10, maxDoubles = 4
Output: 4
Explanation:**** Initially, x = 1
Increment once so x = 2
Double once so x = 4
Increment once so x = 5
Double again so x = 10
Constraints
1 <= target <= 10^90 <= maxDoubles <= 100
Solution
Method 1 – Greedy Reverse Simulation
Intuition
To minimize moves, we should use the double operation as much as possible, but only when it helps. Instead of simulating from 1 to target, we work backwards from target to 1, greedily halving when possible and decrementing otherwise.
Approach
- Start from
targetand work backwards to 1. - If
maxDoublesis available andtargetis even, halvetargetand use a double. - If not, decrement
targetby 1. - Count each operation as a move.
- Stop when
targetreaches 1.
Code
C++
class Solution {
public:
int minMoves(int target, int maxDoubles) {
int ans = 0;
while (target > 1 && maxDoubles > 0) {
if (target % 2 == 0) {
target /= 2;
maxDoubles--;
} else {
target--;
}
ans++;
}
return ans + (target - 1);
}
};
Go
func minMoves(target int, maxDoubles int) int {
ans := 0
for target > 1 && maxDoubles > 0 {
if target%2 == 0 {
target /= 2
maxDoubles--
} else {
target--
}
ans++
}
return ans + (target - 1)
}
Java
class Solution {
public int minMoves(int target, int maxDoubles) {
int ans = 0;
while (target > 1 && maxDoubles > 0) {
if (target % 2 == 0) {
target /= 2;
maxDoubles--;
} else {
target--;
}
ans++;
}
return ans + (target - 1);
}
}
Kotlin
class Solution {
fun minMoves(target: Int, maxDoubles: Int): Int {
var t = target
var d = maxDoubles
var ans = 0
while (t > 1 && d > 0) {
if (t % 2 == 0) {
t /= 2
d--
} else {
t--
}
ans++
}
return ans + (t - 1)
}
}
Python
class Solution:
def minMoves(self, target: int, maxDoubles: int) -> int:
ans: int = 0
while target > 1 and maxDoubles > 0:
if target % 2 == 0:
target //= 2
maxDoubles -= 1
else:
target -= 1
ans += 1
return ans + (target - 1)
Rust
impl Solution {
pub fn min_moves(target: i32, max_doubles: i32) -> i32 {
let mut t = target;
let mut d = max_doubles;
let mut ans = 0;
while t > 1 && d > 0 {
if t % 2 == 0 {
t /= 2;
d -= 1;
} else {
t -= 1;
}
ans += 1;
}
ans + (t - 1)
}
}
TypeScript
class Solution {
minMoves(target: number, maxDoubles: number): number {
let ans = 0;
while (target > 1 && maxDoubles > 0) {
if (target % 2 === 0) {
target /= 2;
maxDoubles--;
} else {
target--;
}
ans++;
}
return ans + (target - 1);
}
}
Complexity
- ⏰ Time complexity:
O(log target), since we halve the number at each double operation. - 🧺 Space complexity:
O(1), only a few variables are used.