You are given a 0-indexedm x n integer matrix grid consisting of
distinct integers from 0 to m * n - 1. You can move in this matrix from a cell to any other cell in the next row. That is, if you are in cell
(x, y) such that x < m - 1, you can move to any of the cells (x + 1, 0),
(x + 1, 1), …, (x + 1, n - 1). Note that it is not possible to move from cells in the last row.
Each possible move has a cost given by a 0-indexed 2D array moveCost of size (m * n) x n, where moveCost[i][j] is the cost of moving from a cell with value i to a cell in column j of the next row. The cost of moving from cells in the last row of grid can be ignored.
The cost of a path in grid is the sum of all values of cells visited plus the sum of costs of all the moves made. Return theminimum cost of a path that starts from any cell in the first row and ends at any cell in the last row.

Input: grid =[[5,3],[4,0],[2,1]], moveCost =[[9,8],[1,5],[10,12],[18,6],[2,4],[14,3]]Output: 17Explanation: The path with the minimum possible cost is the path 5->0->1.- The sum of the values of cells visited is5+0+1=6.- The cost of moving from 5 to 0is3.- The cost of moving from 0 to 1is8.So the total cost of the path is6+3+8=17.
Input: grid =[[5,1,2],[4,0,3]], moveCost =[[12,10,15],[20,23,8],[21,7,1],[8,1,13],[9,10,25],[5,3,2]]Output: 6Explanation: The path with the minimum possible cost is the path 2->3.- The sum of the values of cells visited is2+3=5.- The cost of moving from 2 to 3is1.So the total cost of this path is5+1=6.
For each cell, keep track of the minimum cost to reach it from the first row. For each move, add the cell value and the move cost. Use DP to propagate costs row by row.
classSolution {
publicintminPathCost(int[][] grid, int[][] moveCost) {
int m = grid.length, n = grid[0].length;
int[][] dp =newint[m][n];
for (int[] row : dp) Arrays.fill(row, Integer.MAX_VALUE);
for (int j = 0; j < n; ++j) dp[0][j]= grid[0][j];
for (int i = 1; i < m; ++i) {
for (int j = 0; j < n; ++j) {
for (int k = 0; k < n; ++k) {
int prev = grid[i-1][k];
dp[i][j]= Math.min(dp[i][j], dp[i-1][k]+ moveCost[prev][j]+ grid[i][j]);
}
}
}
int res = dp[m-1][0];
for (int j = 1; j < n; ++j) res = Math.min(res, dp[m-1][j]);
return res;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
classSolution {
funminPathCost(grid: Array<IntArray>, moveCost: Array<IntArray>): Int {
val m = grid.size
val n = grid[0].size
val dp = Array(m) { IntArray(n) { Int.MAX_VALUE } }
for (j in0 until n) dp[0][j] = grid[0][j]
for (i in1 until m) {
for (j in0 until n) {
for (k in0 until n) {
val prev = grid[i-1][k]
dp[i][j] = minOf(dp[i][j], dp[i-1][k] + moveCost[prev][j] + grid[i][j])
}
}
}
return dp[m-1].minOrNull()!! }
}
1
2
3
4
5
6
7
8
9
10
11
classSolution:
defminPathCost(self, grid: list[list[int]], moveCost: list[list[int]]) -> int:
m, n = len(grid), len(grid[0])
dp = [[float('inf')]*n for _ in range(m)]
for j in range(n): dp[0][j] = grid[0][j]
for i in range(1, m):
for j in range(n):
for k in range(n):
prev = grid[i-1][k]
dp[i][j] = min(dp[i][j], dp[i-1][k] + moveCost[prev][j] + grid[i][j])
return min(dp[m-1])
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
impl Solution {
pubfnmin_path_cost(grid: Vec<Vec<i32>>, move_cost: Vec<Vec<i32>>) -> i32 {
let m = grid.len();
let n = grid[0].len();
letmut dp =vec![vec![i32::MAX; n]; m];
for j in0..n { dp[0][j] = grid[0][j]; }
for i in1..m {
for j in0..n {
for k in0..n {
let prev = grid[i-1][k] asusize;
dp[i][j] = dp[i][j].min(dp[i-1][k] + move_cost[prev][j] + grid[i][j]);
}
}
}
*dp[m-1].iter().min().unwrap()
}
}