On a 2D plane, there are n points with integer coordinates points[i] = [xi, yi]. Return _theminimum time in seconds to visit all the points in the order given by _points.
You can move according to these rules:
In 1 second, you can either:
move vertically by one unit,
move horizontally by one unit, or
move diagonally sqrt(2) units (in other words, move one unit vertically then one unit horizontally in 1 second).
You have to visit the points in the same order as they appear in the array.
You are allowed to pass through points that appear later in the order, but these do not count as visits.

Input: points =[[1,1],[3,4],[-1,0]]Output: 7Explanation: One optimal path is**[1,1]**->[2,2]->[3,3]->**[3,4]**->[2,3]->[1,2]->[0,1]->**[-1,0]**Time from [1,1] to [3,4]=3 seconds
Time from [3,4] to [-1,0]=4 seconds
Total time =7 seconds
To minimize time, always move diagonally as much as possible, since a diagonal move covers both axes in one second. The minimum time between two points is the maximum of the differences in x and y coordinates.
classSolution {
public:int minTimeToVisitAllPoints(vector<vector<int>>& points) {
int ans =0;
for (int i =1; i < points.size(); ++i) {
int dx = abs(points[i][0] - points[i-1][0]);
int dy = abs(points[i][1] - points[i-1][1]);
ans += max(dx, dy);
}
return ans;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
funcMinTimeToVisitAllPoints(points [][]int) int {
ans:=0fori:=1; i < len(points); i++ {
dx:=abs(points[i][0] -points[i-1][0])
dy:=abs(points[i][1] -points[i-1][1])
ifdx > dy {
ans+=dx } else {
ans+=dy }
}
returnans}
funcabs(xint) int { ifx < 0 { return-x } else { returnx } }
1
2
3
4
5
6
7
8
9
10
11
classSolution {
publicintminTimeToVisitAllPoints(int[][] points) {
int ans = 0;
for (int i = 1; i < points.length; i++) {
int dx = Math.abs(points[i][0]- points[i-1][0]);
int dy = Math.abs(points[i][1]- points[i-1][1]);
ans += Math.max(dx, dy);
}
return ans;
}
}
1
2
3
4
5
6
7
8
9
10
11
classSolution {
funminTimeToVisitAllPoints(points: Array<IntArray>): Int {
var ans = 0for (i in1 until points.size) {
val dx = kotlin.math.abs(points[i][0] - points[i-1][0])
val dy = kotlin.math.abs(points[i][1] - points[i-1][1])
ans += maxOf(dx, dy)
}
return ans
}
}
1
2
3
4
5
6
7
8
9
from typing import List
classSolution:
defminTimeToVisitAllPoints(self, points: List[List[int]]) -> int:
ans =0for i in range(1, len(points)):
dx = abs(points[i][0] - points[i-1][0])
dy = abs(points[i][1] - points[i-1][1])
ans += max(dx, dy)
return ans
1
2
3
4
5
6
7
8
9
10
11
impl Solution {
pubfnmin_time_to_visit_all_points(points: Vec<Vec<i32>>) -> i32 {
letmut ans =0;
for i in1..points.len() {
let dx = (points[i][0] - points[i-1][0]).abs();
let dy = (points[i][1] - points[i-1][1]).abs();
ans += dx.max(dy);
}
ans
}
}