Number of Good Binary Strings
MediumUpdated: Aug 2, 2025
Practice on:
Problem
You are given four integers minLength, maxLength, oneGroup and
zeroGroup.
A binary string is good if it satisfies the following conditions:
- The length of the string is in the range
[minLength, maxLength]. - The size of each block of consecutive
1's is a multiple ofoneGroup.- For example in a binary string
00 _11_ 0 _1111_ 00sizes of each block of consecutive ones are[2,4].
- For example in a binary string
- The size of each block of consecutive
0's is a multiple ofzeroGroup.- For example, in a binary string
_00_ 11 _0_ 1111 _00_sizes of each block of consecutive zeros are[2,1,2].
- For example, in a binary string
Return the number ofgood binary strings. Since the answer may be too large, return it modulo 109 + 7.
Note that 0 is considered a multiple of all the numbers.
Examples
Example 1:
Input: minLength = 2, maxLength = 3, oneGroup = 1, zeroGroup = 2
Output: 5
Explanation: There are 5 good binary strings in this example: "00", "11", "001", "100", and "111".
It can be proven that there are only 5 good strings satisfying all conditions.
Example 2:
Input: minLength = 4, maxLength = 4, oneGroup = 4, zeroGroup = 3
Output: 1
Explanation: There is only 1 good binary string in this example: "1111".
It can be proven that there is only 1 good string satisfying all conditions.
Constraints:
1 <= minLength <= maxLength <= 10^51 <= oneGroup, zeroGroup <= maxLength
Solution
Method 1 – DP with Group Constraints
Intuition
We build good binary strings by appending blocks of 1's (length multiple of oneGroup) and blocks of 0's (length multiple of zeroGroup). Use DP: dp[i] = number of good strings of length i ending with either 0 or 1 block.
Approach
- dp[i] = number of good strings of length i.
- For each i, add dp[i-zeroGroup] (if i >= zeroGroup) and dp[i-oneGroup] (if i >= oneGroup).
- Initialize dp[0] = 1 (empty string is valid for block size 0).
- Sum dp[i] for i in [minLength, maxLength].
Code
C++
#include <vector>
using namespace std;
class Solution {
public:
int goodBinaryStrings(int minLength, int maxLength, int oneGroup, int zeroGroup) {
const int MOD = 1e9+7;
vector<int> dp(maxLength+1, 0);
dp[0] = 1;
for (int i = 1; i <= maxLength; ++i) {
if (i >= oneGroup) dp[i] = (dp[i] + dp[i-oneGroup]) % MOD;
if (i >= zeroGroup) dp[i] = (dp[i] + dp[i-zeroGroup]) % MOD;
}
int ans = 0;
for (int i = minLength; i <= maxLength; ++i) ans = (ans + dp[i]) % MOD;
return ans;
}
};
Go
func goodBinaryStrings(minLength, maxLength, oneGroup, zeroGroup int) int {
mod := int(1e9+7)
dp := make([]int, maxLength+1)
dp[0] = 1
for i := 1; i <= maxLength; i++ {
if i >= oneGroup { dp[i] = (dp[i] + dp[i-oneGroup]) % mod }
if i >= zeroGroup { dp[i] = (dp[i] + dp[i-zeroGroup]) % mod }
}
ans := 0
for i := minLength; i <= maxLength; i++ { ans = (ans + dp[i]) % mod }
return ans
}
Java
class Solution {
public int goodBinaryStrings(int minLength, int maxLength, int oneGroup, int zeroGroup) {
int MOD = (int)1e9+7;
int[] dp = new int[maxLength+1];
dp[0] = 1;
for (int i = 1; i <= maxLength; ++i) {
if (i >= oneGroup) dp[i] = (dp[i] + dp[i-oneGroup]) % MOD;
if (i >= zeroGroup) dp[i] = (dp[i] + dp[i-zeroGroup]) % MOD;
}
int ans = 0;
for (int i = minLength; i <= maxLength; ++i) ans = (ans + dp[i]) % MOD;
return ans;
}
}
Kotlin
class Solution {
fun goodBinaryStrings(minLength: Int, maxLength: Int, oneGroup: Int, zeroGroup: Int): Int {
val MOD = 1_000_000_007
val dp = IntArray(maxLength+1)
dp[0] = 1
for (i in 1..maxLength) {
if (i >= oneGroup) dp[i] = (dp[i] + dp[i-oneGroup]) % MOD
if (i >= zeroGroup) dp[i] = (dp[i] + dp[i-zeroGroup]) % MOD
}
var ans = 0
for (i in minLength..maxLength) ans = (ans + dp[i]) % MOD
return ans
}
}
Python
class Solution:
def goodBinaryStrings(self, minLength: int, maxLength: int, oneGroup: int, zeroGroup: int) -> int:
MOD = 10**9+7
dp = [0]*(maxLength+1)
dp[0] = 1
for i in range(1, maxLength+1):
if i >= oneGroup:
dp[i] = (dp[i] + dp[i-oneGroup]) % MOD
if i >= zeroGroup:
dp[i] = (dp[i] + dp[i-zeroGroup]) % MOD
return sum(dp[minLength:maxLength+1]) % MOD
Rust
impl Solution {
pub fn good_binary_strings(min_length: i32, max_length: i32, one_group: i32, zero_group: i32) -> i32 {
let min_length = min_length as usize;
let max_length = max_length as usize;
let one_group = one_group as usize;
let zero_group = zero_group as usize;
let m = 1_000_000_007;
let mut dp = vec![0; max_length+1];
dp[0] = 1;
for i in 1..=max_length {
if i >= one_group { dp[i] = (dp[i] + dp[i-one_group]) % m; }
if i >= zero_group { dp[i] = (dp[i] + dp[i-zero_group]) % m; }
}
let mut ans = 0;
for i in min_length..=max_length { ans = (ans + dp[i]) % m; }
ans
}
}
TypeScript
class Solution {
goodBinaryStrings(minLength: number, maxLength: number, oneGroup: number, zeroGroup: number): number {
const MOD = 1e9+7;
const dp = Array(maxLength+1).fill(0);
dp[0] = 1;
for (let i = 1; i <= maxLength; ++i) {
if (i >= oneGroup) dp[i] = (dp[i] + dp[i-oneGroup]) % MOD;
if (i >= zeroGroup) dp[i] = (dp[i] + dp[i-zeroGroup]) % MOD;
}
let ans = 0;
for (let i = minLength; i <= maxLength; ++i) ans = (ans + dp[i]) % MOD;
return ans;
}
}
Complexity
- ⏰ Time complexity:
O(N), where N = maxLength. - 🧺 Space complexity:
O(N).