Given an m x n 2D binary grid grid which represents a map of '1's (land) and '0's (water), return the number of islands.
An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.
The basic idea of the following solution is merging adjacent lands, and the merging should be done recursively.
Involves array modification.
We will set values to X, by doing dfs on it till the point we reach the island. Once, done, we check for next 1 which is not yet updated.
Each element is visited once only. So time is O(m*n).
publicclassSolution {
publicintnumIslands(char[][] grid) {
int ans = 0;
int m = grid.length;
int n = grid[0].length;
for (int r = 0; r < m; r++) {
for (int c = 0; c < n; c++) {
if (grid[r][c]=='1') {
ans++;
dfs(grid, r, c);
}
}
}
return ans;
}
privatefinalint[][] dirs = {{-1, 0}, {0, 1}, {1, 0}, {0, -1}};
privatevoiddfs(char[][] grid, int r, int c) {
if (r < 0 || c < 0 || r >= grid.length|| c >= grid[0].length|| grid[r][c]=='0') {
return;
}
grid[r][c]='0';
for (int[] dir : dirs) {
dfs(grid, r + dir[0], c + dir[1]);
}
}
}
classSolution:
defnumIslands(self, grid):
ifnot grid:
return0 m, n = len(grid), len(grid[0])
ans =0defdfs(r, c):
if r <0or c <0or r >= m or c >= n or grid[r][c] =='0':
return grid[r][c] ='0' dirs = [(-1, 0), (0, 1), (1, 0), (0, -1)]
for dr, dc in dirs:
dfs(r + dr, c + dc)
for r in range(m):
for c in range(n):
if grid[r][c] =='1':
ans +=1 dfs(r, c)
return ans
classSolution:
defnumIslands(self, grid: List[List[str]]) -> int:
ifnot grid:
return0# Number of rows and columns rows, cols = len(grid), len(grid[0])
# Island counter ans: int =0# DFS function to mark connected landsdefdfs(r: int, c: int) ->None:
# If out of bounds or water, stop recursionif r <0or c <0or r >= rows or c >= cols or grid[r][c] =='0':
return# Mark current cell as water so we don't revisit it grid[r][c] ='0'# Visit all adjacent cells (up, down, left, right) dfs(r+1, c)
dfs(r-1, c)
dfs(r, c+1)
dfs(r, c-1)
# Iterate through the entire gridfor r in range(rows):
for c in range(cols):
# If a land cell is found, start a DFSif grid[r][c] =='1':
ans +=1# Increment island count dfs(r, c) # Mark the entire islandreturn ans
publicintnumIslands(char[][] grid) {
if (grid ==null|| grid.length== 0 || grid[0].length== 0)
return 0;
int m = grid.length;
int n = grid[0].length;
int[] dx = {-1, 1, 0, 0 };
int[] dy = { 0, 0, -1, 1 };
int[] root =newint[m * n];
int count = 0;
for (int i = 0; i<m; i++) {
for (int j = 0; j<n; j++) {
if (grid[i][j]=='1') {
root[i * n + j]= i * n + j;
count++;
}
}
}
for (int i = 0; i<m; i++) {
for (int j = 0; j<n; j++) {
if (grid[i][j]=='1') {
for (int k = 0; k<4; k++) {
int x = i + dx[k];
int y = j + dy[k];
if (x >= 0 && x<m && y >= 0 && y<n && grid[x][y]=='1') {
int cRoot = getRoot(root, i * n + j);
int nRoot = getRoot(root, x * n + y);
if (nRoot != cRoot) {
root[cRoot]= nRoot; //update previous node's root to be current count--;
}
}
}
}
}
}
return count;
}
publicintgetRoot(int[] arr, int i) {
while (arr[i]!= i) {
i = arr[arr[i]];
}
return i;
}