Problem
Given an m x n
2D binary grid grid
which represents a map of '1'
s (land) and '0'
s (water), return the number of islands.
An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.
Examples
Example 1:
$$ \begin{array}{|c|c|c|c|c|} \hline \colorbox{Chocolate} 1 & \colorbox{Chocolate} 1 & \colorbox{Chocolate} 1 & \colorbox{Chocolate} 1 & \colorbox{blue} 0 \\ \hline \colorbox{Chocolate} 1 & \colorbox{Chocolate} 1 & \colorbox{blue} 0 & \colorbox{Chocolate} 1 & \colorbox{blue} 0 \\ \hline \colorbox{Chocolate} 1 & \colorbox{Chocolate} 1 & \colorbox{blue} 0 & \colorbox{blue} 0 & \colorbox{blue} 0 \\ \hline \colorbox{blue} 0 & \colorbox{blue} 0 & \colorbox{blue} 0 & \colorbox{blue} 0 & \colorbox{blue} 0 \\ \hline \end{array} $$
Input: grid = [
["1","1","1","1","0"],
["1","1","0","1","0"],
["1","1","0","0","0"],
["0","0","0","0","0"]
]
Output: 1
Example 2:
$$ \begin{array}{|c|c|c|c|c|} \hline \colorbox{Chocolate} 1 & \colorbox{Chocolate} 1 & \colorbox{blue} 0 & \colorbox{blue} 0 & \colorbox{blue} 0 \\ \hline \colorbox{Chocolate} 1 & \colorbox{Chocolate} 1 & \colorbox{blue} 0 & \colorbox{blue} 0 & \colorbox{blue} 0 \\ \hline \colorbox{blue} 0 & \colorbox{blue} 0 & \colorbox{Chocolate} 1 & \colorbox{blue} 0 & \colorbox{blue} 0 \\ \hline \colorbox{blue} 0 & \colorbox{blue} 0 & \colorbox{blue} 0 & \colorbox{Chocolate} 1 & \colorbox{Chocolate} 1 \\ \hline \end{array} $$
Input: grid = [
["1","1","0","0","0"],
["1","1","0","0","0"],
["0","0","1","0","0"],
["0","0","0","1","1"]
]
Output: 3
Constraints
m == grid.length
n == grid[i].length
1 <= m, n <= 300
grid[i][j]
is'0'
or'1'
.
Solution
Looks like a graph problem, with finding connected components.
Method 1 - DFS with Sinking of Island
The basic idea of the following solution is merging adjacent lands, and the merging should be done recursively.
Involves array modification.
We will set values to X
, by doing dfs on it till the point we reach the island. Once, done, we check for next 1
which is not yet updated.
Each element is visited once only. So time is O(m*n)
.
Video explanation
Here is the video explaining this method in detail. Please check it out:
Code
Java
public class Solution {
public int numIslands(char[][] grid) {
int ans = 0;
int m = grid.length;
int n = grid[0].length;
for (int r = 0; r < m; r++) {
for (int c = 0; c < n; c++) {
if (grid[r][c] == '1') {
ans++;
dfs(grid, r, c);
}
}
}
return ans;
}
private final int[][] dirs = {{-1, 0}, {0, 1}, {1, 0}, {0, -1}};
private void dfs(char[][] grid, int r, int c) {
if (r < 0 || c < 0 || r >= grid.length || c >= grid[0].length ||
grid[r][c] == '0') {
return;
}
grid[r][c] = '0';
for (int[] dir : dirs) {
dfs(grid, r + dir[0], c + dir[1]);
}
}
}
Without Directions Array
public class Solution {
public int numIslands(char[][] grid) {
if (grid == null || grid.length == 0) {
return 0;
}
int rows = grid.length;
int cols = grid[0].length;
int ans = 0;
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols; c++) {
if (grid[r][c] == '1') {
ans++;
dfs(grid, r, c);
}
}
}
return ans;
}
private void dfs(char[][] grid, int r, int c) {
int rows = grid.length;
int cols = grid[0].length;
if (r < 0 || c < 0 || r >= rows || c >= cols || grid[r][c] == '0') {
return;
}
grid[r][c] = '0';
dfs(grid, r+1, c);
dfs(grid, r-1, c);
dfs(grid, r, c+1);
dfs(grid, r, c-1);
}
}
Python
class Solution:
def numIslands(self, grid):
if not grid:
return 0
m, n = len(grid), len(grid[0])
ans = 0
def dfs(r, c):
if r < 0 or c < 0 or r >= m or c >= n or grid[r][c] == '0':
return
grid[r][c] = '0'
dirs = [(-1, 0), (0, 1), (1, 0), (0, -1)]
for dr, dc in dirs:
dfs(r + dr, c + dc)
for r in range(m):
for c in range(n):
if grid[r][c] == '1':
ans += 1
dfs(r, c)
return ans
Without Directions Array
class Solution:
def numIslands(self, grid: List[List[str]]) -> int:
if not grid:
return 0
# Number of rows and columns
rows, cols = len(grid), len(grid[0])
# Island counter
ans: int = 0
# DFS function to mark connected lands
def dfs(r: int, c: int) -> None:
# If out of bounds or water, stop recursion
if r < 0 or c < 0 or r >= rows or c >= cols or grid[r][c] == '0':
return
# Mark current cell as water so we don't revisit it
grid[r][c] = '0'
# Visit all adjacent cells (up, down, left, right)
dfs(r+1, c)
dfs(r-1, c)
dfs(r, c+1)
dfs(r, c-1)
# Iterate through the entire grid
for r in range(rows):
for c in range(cols):
# If a land cell is found, start a DFS
if grid[r][c] == '1':
ans += 1 # Increment island count
dfs(r, c) # Mark the entire island
return ans
Method 2 - BFS and Visited Set
Similar to above approach, but we will use set for visited nodes. Also, we will use queue instead of stack.
Code
Java
class Solution {
public int numIslands(char[][] grid) {
if (grid == null || grid.length == 0 || grid[0].length == 0)
return 0;
int m = grid.length;
int n = grid[0].length;
Set<Pair<Integer, Integer>> visited = new HashSet<>();
int count = 0;
for (int i = 0; i<m; i++) {
for (int j = 0; j<n; j++) {
if (grid[i][j] == '1' && !visisted.contains(new Pair<>(i, j))) {
count++;
bfs(grid, i, j);
}
}
}
return count;
}
public void bfs(int r, int c, Set<Pair<Integer, Integer>> visited) {
Queue<Pair<Integer, Integer>> q = new LinkedList<>();
int m = grid.length;
int n = grid[0].length;
Pair<Integer, Integer> p = new Pair<>(r, c);
visited.push(p);
q.add(p)
int[] dx = {-1, 1, 0, 0 };
int[] dy = { 0, 0, -1, 1 };
while (!q.isEmpty()) {
for (int k = 0; k<4; k++) {
int newR = r + dx[k];
int newC = c + dy[k];
if (newR >= 0 && newR<m && newC >= 0 && newC<n && grid[x][y] == '1' && !visited.contains(new Pair<>(newR, newC))) {
q.add(new Pair<>(newR, newC));
visited.add(new Pair<>(newR, newC));
}
}
}
}
}
Complexity
- ⏰ Time complexity:
O(m*n)
- 🧺 Space complexity:
O(m*n)
Method 3 - Union-Find
Code
Java
public int numIslands(char[][] grid) {
if (grid == null || grid.length == 0 || grid[0].length == 0)
return 0;
int m = grid.length;
int n = grid[0].length;
int[] dx = {-1, 1, 0, 0 };
int[] dy = { 0, 0, -1, 1 };
int[] root = new int[m * n];
int count = 0;
for (int i = 0; i<m; i++) {
for (int j = 0; j<n; j++) {
if (grid[i][j] == '1') {
root[i * n + j] = i * n + j;
count++;
}
}
}
for (int i = 0; i<m; i++) {
for (int j = 0; j<n; j++) {
if (grid[i][j] == '1') {
for (int k = 0; k<4; k++) {
int x = i + dx[k];
int y = j + dy[k];
if (x >= 0 && x<m && y >= 0 && y<n && grid[x][y] == '1') {
int cRoot = getRoot(root, i * n + j);
int nRoot = getRoot(root, x * n + y);
if (nRoot != cRoot) {
root[cRoot] = nRoot; //update previous node's root to be current
count--;
}
}
}
}
}
}
return count;
}
public int getRoot(int[] arr, int i) {
while (arr[i] != i) {
i = arr[arr[i]];
}
return i;
}
Complexity
- ⏰ Time complexity:
O(m*n)
roughly - 🧺 Space complexity:
O(m*n)