Problem
There are n
cities. Some of them are connected, while some are not. If city a
is connected directly with city b
, and city b
is connected directly with city c
, then city a
is connected indirectly with city c
.
A province is a group of directly or indirectly connected cities and no other cities outside of the group.
You are given an n x n
matrix isConnected
where isConnected[i][j] = 1
if the ith
city and the jth
city are directly connected, and isConnected[i][j] = 0
otherwise.
Return the total number of provinces.
Examples
Example 1:
graph LR 1 --- 2 3
Input:
isConnected =[[1,1,0],[1,1,0],[0,0,1]]
Output:
2
Example 2:
graph TD 1 2 3
Input:
isConnected =[[1,0,0],[0,1,0],[0,0,1]]
Output:
3
Solution
Method 1 - DFS
Code
Java
public class Solution {
public int findCircleNum(int[][] isConnected) {
boolean[] visited = new boolean[isConnected.length];
int count = 0;
for (int i = 0; i < isConnected.length; i++) {
if (!visited[i]) {
dfs(isConnected, visited, i);
count++;
}
}
return count;
}
public void dfs(int[][] isConnected, boolean[] visited, int i) {
for (int j = 0; j < isConnected.length; j++) {
if (isConnected[i][j] == 1 && !visited[j]) {
visited[j] = true;
dfs(isConnected, visited, j);
}
}
}
}
Complexity
- Time:
O(n^2)
for doing dfs as it is adjacency matrix representation - Space:
O(n)
for recursion stack and also visited array.
Method 2 - Union Find Data Structure
This is a typical Union Find
problem. Just add all the edges to it, and count the number of components.
Code
Java
public class Solution {
public int findCircleNum(int[][] isConnected) {
int n = isConnected.length;
UnionFind uf = new UnionFind(n);
for (int i = 0; i < n - 1; i++) {
for (int j = i + 1; j < n; j++) {
if (isConnected[i][j] == 1) {
uf.union(i, j);
}
}
}
return uf.getNumComponents();
}
static class UnionFind {
private int[] parent;
private int[] rank;
private int numComponents;
public UnionFind(int n) {
this.numComponents = n;
makeSet();
}
private void makeSet() {
rank = new int[numComponents];
parent = new int[numComponents];
for (int i = 0; i < parent.length; i++) {
parent[i] = i;
rank[i] = 0;
}
}
public boolean union(int x, int y) {
int root1 = find(x);
int root2 = find(y);
if (root1 == root2) {
return false;
}
if (rank[root1] > rank[root2]) {
parent[root2] = root1;
} else {
parent[root1] = root2;
}
if (rank[root1] == rank[root2]) {
rank[root2] += 1;
}
numComponents--;
return true;
}
public int find(int x) {
while (parent[x] != x) {
x = parent[x];
}
return x;
}
// count
public int getNumComponents() {
return numComponents;
}
public boolean isFullyConnected() {
return numComponents == 1;
}
}
}
Complexity
- ⏰ Time complexity:
O(n^2 * α(n))
- There are two nested loops which iterate over the upper triangular matrix excluding the diagonal.
- Outer loop (
i
): runs from 0 ton-2
->O(n)
- Inner loop (
j
): runs fromi+1
ton-1
->O(n-i-1)
- Outer loop (
- The
union
andfind
operations on average takeO(α(n))
, whereα
is the inverse Ackermann function, which is very close toO(1)
for practical values ofn
.
- There are two nested loops which iterate over the upper triangular matrix excluding the diagonal.
- 🧺 Space complexity:
O(n)
for storing parent and rank array.