You are given an integer n, which indicates that there are n courses labeled from 1 to n. You are also given an array relations where
relations[i] = [prevCoursei, nextCoursei], representing a prerequisite relationship between course prevCoursei and course nextCoursei: course
prevCoursei has to be taken before course nextCoursei.
In one semester, you can take any number of courses as long as you have taken all the prerequisites in the previous semester for the courses you are taking.
Return theminimum number of semesters needed to take all courses. If there is no way to take all the courses, return -1.

Input: n =3, relations =[[1,3],[2,3]]Output: 2Explanation: The figure above represents the given graph.In the first semester, you can take courses 1 and 2.In the second semester, you can take course 3.
Example 2:
1
2
3
4

Input: n =3, relations =[[1,2],[2,3],[3,1]]Output: -1Explanation: No course can be studied because they are prerequisites of each other.
Constraints:
1 <= n <= 5000
1 <= relations.length <= 5000
relations[i].length == 2
1 <= prevCoursei, nextCoursei <= n
prevCoursei != nextCoursei
All the pairs [prevCoursei, nextCoursei] are unique.
We need to find the minimum number of semesters to finish all courses, where in each semester we can take any number of courses as long as all their prerequisites are completed. This is equivalent to finding the longest path in a DAG (Directed Acyclic Graph) formed by the prerequisites. If there is a cycle, it’s impossible to finish all courses.
classSolution {
public:int minimumSemesters(int n, vector<vector<int>>& relations) {
vector<vector<int>> g(n+1);
vector<int> indeg(n+1, 0);
for (auto& r : relations) {
g[r[0]].push_back(r[1]);
indeg[r[1]]++;
}
queue<int> q;
for (int i =1; i <= n; ++i) if (indeg[i] ==0) q.push(i);
int taken =0, sem =0;
while (!q.empty()) {
int sz = q.size();
for (int i =0; i < sz; ++i) {
int u = q.front(); q.pop();
taken++;
for (int v : g[u]) {
if (--indeg[v] ==0) q.push(v);
}
}
sem++;
}
return taken == n ? sem : -1;
}
};
classSolution {
publicintminimumSemesters(int n, int[][] relations) {
List<List<Integer>> g =new ArrayList<>();
for (int i = 0; i <= n; i++) g.add(new ArrayList<>());
int[] indeg =newint[n+1];
for (int[] r : relations) {
g.get(r[0]).add(r[1]);
indeg[r[1]]++;
}
Queue<Integer> q =new LinkedList<>();
for (int i = 1; i <= n; i++) if (indeg[i]== 0) q.offer(i);
int taken = 0, sem = 0;
while (!q.isEmpty()) {
int sz = q.size();
for (int i = 0; i < sz; i++) {
int u = q.poll();
taken++;
for (int v : g.get(u)) {
if (--indeg[v]== 0) q.offer(v);
}
}
sem++;
}
return taken == n ? sem : -1;
}
}
classSolution {
funminimumSemesters(n: Int, relations: Array<IntArray>): Int {
val g = Array(n+1) { mutableListOf<Int>() }
val indeg = IntArray(n+1)
for (r in relations) {
g[r[0]].add(r[1])
indeg[r[1]]++ }
var taken = 0var sem = 0var q = mutableListOf<Int>()
for (i in1..n) if (indeg[i] ==0) q.add(i)
while (q.isNotEmpty()) {
val next = mutableListOf<Int>()
for (u in q) {
taken++for (v in g[u]) {
indeg[v]--if (indeg[v] ==0) next.add(v)
}
}
q = next
sem++ }
returnif (taken == n) sem else -1 }
}
classSolution:
defminimumSemesters(self, n: int, relations: list[list[int]]) -> int:
g = [[] for _ in range(n+1)]
indeg = [0] * (n+1)
for u, v in relations:
g[u].append(v)
indeg[v] +=1 q = [i for i in range(1, n+1) if indeg[i] ==0]
taken = sem =0while q:
nxt = []
for u in q:
taken +=1for v in g[u]:
indeg[v] -=1if indeg[v] ==0:
nxt.append(v)
q = nxt
sem +=1return sem if taken == n else-1