Partition Array According to Given Pivot
MediumUpdated: Aug 2, 2025
Practice on:
Problem
You are given a 0-indexed integer array nums and an integer pivot.
Rearrange nums such that the following conditions are satisfied:
- Every element less than
pivotappears before every element greater thanpivot. - Every element equal to
pivotappears in between the elements less than and greater thanpivot. - The relative order of the elements less than
pivotand the elements greater thanpivotis maintained.- More formally, consider every
pi,pjwherepiis the new position of theithelement andpjis the new position of thejthelement. For elements less thanpivot, ifi < jandnums[i] < pivotandnums[j] < pivot, thenpi < pj. Similarly for elements greater thanpivot, ifi < jandnums[i] > pivotandnums[j] > pivot, thenpi < pj.
- More formally, consider every
Return nums after the rearrangement.
Examples
Example 1:
Input: nums = [9,12,5,10,14,3,10], pivot = 10
Output: [9,5,3,10,10,12,14]
Explanation:
The elements 9, 5, and 3 are less than the pivot so they are on the left side of the array.
The elements 12 and 14 are greater than the pivot so they are on the right side of the array.
The relative ordering of the elements less than and greater than pivot is also maintained. [9, 5, 3] and [12, 14] are the respective orderings.
Example 2:
Input: nums = [-3,4,3,2], pivot = 2
Output: [-3,2,4,3]
Explanation:
The element -3 is less than the pivot so it is on the left side of the array.
The elements 4 and 3 are greater than the pivot so they are on the right side of the array.
The relative ordering of the elements less than and greater than pivot is also maintained. [-3] and [4, 3] are the respective orderings.
Constraints:
1 <= nums.length <= 105-106 <= nums[i] <= 106pivotequals to an element ofnums.
Solution
Method 1 - Creating 3 lists and update the arrays
To rearrange the elements of the array based on the given pivot, we need to maintain three separate lists:
- One for elements less than the pivot.
- One for elements equal to the pivot.
- One for elements greater than the pivot.
By iterating through the array and appending each element to the appropriate list, we effectively partition the array into the required format while maintaining relative order. Finally, we concatenate these three lists to obtain the rearranged array.
Approach
- Initialize Three Lists:
- One for elements less than
pivot. - One for elements equal to
pivot. - One for elements greater than
pivot.
- One for elements less than
- Iterate Through the Original List:
- Append each element to the corresponding list based on its comparison with
pivot.
- Append each element to the corresponding list based on its comparison with
- Concatenate the Three Lists:
- Combine all three lists to get the partitioned list.
- Return the Partitioned List:
- Return the concatenated list as the result.
Code
Java
public class Solution {
public int[] pivotArray(int[] nums, int pivot) {
List<Integer> less = new ArrayList<>();
List<Integer> equal = new ArrayList<>();
List<Integer> greater = new ArrayList<>();
for (int num : nums) {
if (num < pivot) {
less.add(num);
} else if (num == pivot) {
equal.add(num);
} else {
greater.add(num);
}
}
int[] ans = new int[nums.length];
int index = 0;
for (int num : less) {
ans[index++] = num;
}
for (int num : equal) {
ans[index++] = num;
}
for (int num : greater) {
ans[index++] = num;
}
return ans;
}
}
Python
class Solution:
def pivotArray(self, nums: List[int], pivot: int) -> List[int]:
less_than_pivot: List[int] = []
equal_to_pivot: List[int] = []
greater_than_pivot: List[int] = []
for num in nums:
if num < pivot:
less_than_pivot.append(num)
elif num == pivot:
equal_to_pivot.append(num)
else:
greater_than_pivot.append(num)
return less_than_pivot + equal_to_pivot + greater_than_pivot
Complexity
- ⏰ Time complexity:
O(n), wherenis the number of elements innums, as we are iterating through the list once. - 🧺 Space complexity:
O(n), wherenis the number of elements innums, for storing elements in the three separate lists.
Method 2 - Using Two Pointer Approach
We can also use two pointer technique:
- Using the two-pointer approach, we process the
numsarray in one traversal while maintaining relative order.lessIdxto place elements less thanpivotat the beginning of the array.greaterIdxto place elements greater thanpivotfrom the end of the array.
- Create an auxiliary array
ansof the same length asnumsto store the rearranged numbers.
Here is the algorithm:
- Numbers
< pivotget placed sequentially vialessIdx. - Numbers
> pivotget stored viagreaterIdx - All occurrences of
pivotfill the middle (whileloop) once the pointers converge.
Code
Java
class Solution {
public int[] pivotArray(int[] nums, int pivot) {
int[] ans = new int[nums.length];
int lessIdx = 0; // Pointer for < pivot
int greaterIdx = nums.length - 1; // Pointer for > pivot
for (int i = 0, j = nums.length - 1; i < nums.length; i++, j--) {
if (nums[i] < pivot) {
ans[lessIdx] = nums[i];
lessIdx++;
}
if (nums[j] > pivot) {
ans[greaterIdx] = nums[j];
greaterIdx--;
}
}
while (lessIdx <= greaterIdx) {
ans[lessIdx] = pivot;
lessIdx++;
}
return ans;
}
}
Python
class Solution:
def pivotArray(self, nums: List[int], pivot: int) -> List[int]:
ans = [0] * len(nums) # Result array
lessIdx = 0 # Pointer for < pivot
greaterIdx = len(nums) - 1 # Pointer for > pivot
i, j = 0, len(nums) - 1
while i < len(nums):
if nums[i] < pivot:
ans[lessIdx] = nums[i]
lessIdx += 1
if nums[j] > pivot:
ans[greaterIdx] = nums[j]
greaterIdx -= 1
i += 1
j -= 1
# Fill all the pivot values in the middle
while lessIdx <= greaterIdx:
ans[lessIdx] = pivot
lessIdx += 1
return ans
Complexity
- ⏰ Time complexity:
O(n)as we traverse the array three times with linear time operations. - 🧺 Space complexity:
O(n)due to the use of the auxiliary arrayans.