Problem
Given an integer array nums
and an integer k
, return true
if it is possible to divide this array into k
non-empty subsets whose sums are all equal.
Examples
Example 1:
Input:
nums = [4,3,2,3,5,2,1], k = 4
Output:
true
Explanation: It is possible to divide it into 4 subsets (5), (1, 4), (2,3), (2,3) with equal sums.
Example 2:
Input:
nums = [1,2,3,4], k = 3
Output:
false
Similar problems
Solution
Method 1 - Backtracking
We can use visited
boolean array to track if the value is part of some subset. Then we go deeper into DFS. For each partition, targetSum
is sum(nums)/k
.
Base Case
- if we reach
k = 1
, then we have reached target - if
currSum > targetSum
then we returnfalse
Actual Recursion
- If we
currSum
istargetSum
, and there arek's
more than 1, then we find thetargetSum
again withk - 1
partition. - If not, go through array and see if we can find
k
partitions and backtrack if we couldn’t find answer in that path
Code
Java
public boolean canPartitionKSubsets(int[] nums, int k) {
var sum = IntStream.of(nums).sum();
if (sum % k != 0) {
return false;
}
return canPartitionKSubsets(nums, k, 0, 0, sum / k, new boolean[nums.length]);
}
private boolean canPartitionKSubsets(int[] nums, int k, int start, int currSum, final int targetSum, boolean[] visited) {
if (k == 1) {
return true;
}
if (currSum > targetSum) {
return false;
}
if (currSum == targetSum) {
return canPartitionKSubsets(nums, k - 1, 0, 0, targetSum, visited);
}
for (var i = start; i < nums.length; i++) {
if (visited[i]) {
continue;
}
visited[i] = true;
if (canPartitionKSubsets(nums, k, i + 1, currSum + nums[i], targetSum, visited)) {
return true;
}
visited[i] = false;
}
return false;
}
Complexity
- ⏰ Time complexity:
O(k*2^n)
because we runk
iterations for recursion, and in that we have2^n
choices to create the subset such that sum is equal tosum(nums)/k
. - 🧺 Space complexity:
O(n)
forvisited
set, recursion stack, etc