Product's Price for Each Store
EasyUpdated: Aug 2, 2025
Practice on:
Problem
Table: Products
+-------------+---------+
| Column Name | Type |
+-------------+---------+
| product_id | int |
| store | enum |
| price | int |
+-------------+---------+
In SQL, (product_id, store) is the primary key for this table.
store is a category of type ('store1', 'store2', 'store3') where each represents the store this product is available at.
price is the price of the product at this store.
Find the price of each product in each store.
Return the result table in any order.
The result format is in the following example.
Examples
Example 1:
Input:
Products table:
+-------------+--------+-------+
| product_id | store | price |
+-------------+--------+-------+
| 0 | store1 | 95 |
| 0 | store3 | 105 |
| 0 | store2 | 100 |
| 1 | store1 | 70 |
| 1 | store3 | 80 |
+-------------+--------+-------+
Output:
+-------------+--------+--------+--------+
| product_id | store1 | store2 | store3 |
+-------------+--------+--------+--------+
| 0 | 95 | 100 | 105 |
| 1 | 70 | null | 80 |
+-------------+--------+--------+--------+
Explanation:
Product 0 price's are 95 for store1, 100 for store2 and, 105 for store3.
Product 1 price's are 70 for store1, 80 for store3 and, it's not sold in store2.
Solution
Method 1 – Pivot Table (CASE WHEN or crosstab)
Intuition
We need to pivot the table so that each row is a product and each store is a column. This is a classic SQL pivot/crosstab problem.
Approach
- Use conditional aggregation (CASE WHEN) in SQL to pivot the table.
- In pandas, use the pivot method.
Code
MySQL
SELECT product_id,
MAX(CASE WHEN store = 'store1' THEN price END) AS store1,
MAX(CASE WHEN store = 'store2' THEN price END) AS store2,
MAX(CASE WHEN store = 'store3' THEN price END) AS store3
FROM Products
GROUP BY product_id;
PostgreSQL
SELECT product_id,
MAX(CASE WHEN store = 'store1' THEN price END) AS store1,
MAX(CASE WHEN store = 'store2' THEN price END) AS store2,
MAX(CASE WHEN store = 'store3' THEN price END) AS store3
FROM Products
GROUP BY product_id;
Python (pandas)
# Assume Products is a pandas DataFrame
import pandas as pd
def products_price_for_each_store(Products: pd.DataFrame) -> pd.DataFrame:
result = Products.pivot(index='product_id', columns='store', values='price').reset_index()
# Optional: ensure columns are in the right order
for col in ['store1', 'store2', 'store3']:
if col not in result.columns:
result[col] = None
result = result[['product_id', 'store1', 'store2', 'store3']]
return result
Complexity
- ⏰ Time complexity:
O(N)where N is the number of rows in Products. - 🧺 Space complexity:
O(P)where P is the number of products.