Queries on a Permutation With Key
MediumUpdated: Aug 2, 2025
Practice on:
Problem
Given the array queries of positive integers between 1 and m, you have to process all queries[i] (from i=0 to i=queries.length-1) according to the following rules:
- In the beginning, you have the permutation
P=[1,2,3,...,m]. - For the current
i, find the position ofqueries[i]in the permutationP(indexing from 0) and then move this at the beginning of the permutationP. Notice that the position ofqueries[i]inPis the result forqueries[i].
Return an array containing the result for the given queries.
Examples
Example 1
Input: queries = [3,1,2,1], m = 5
Output: [2,1,2,1]
Explanation: The queries are processed as follow:
For i=0: queries[i]=3, P=[1,2,3,4,5], position of 3 in P is **2** , then we move 3 to the beginning of P resulting in P=[3,1,2,4,5].
For i=1: queries[i]=1, P=[3,1,2,4,5], position of 1 in P is **1** , then we move 1 to the beginning of P resulting in P=[1,3,2,4,5].
For i=2: queries[i]=2, P=[1,3,2,4,5], position of 2 in P is **2** , then we move 2 to the beginning of P resulting in P=[2,1,3,4,5].
For i=3: queries[i]=1, P=[2,1,3,4,5], position of 1 in P is **1** , then we move 1 to the beginning of P resulting in P=[1,2,3,4,5].
Therefore, the array containing the result is [2,1,2,1].
Example 2
Input: queries = [4,1,2,2], m = 4
Output: [3,1,2,0]
Example 3
Input: queries = [7,5,5,8,3], m = 8
Output: [6,5,0,7,5]
Constraints
1 <= m <= 10^31 <= queries.length <= m1 <= queries[i] <= m
Solution
Method 1 – Simulation with List
Intuition
We can directly simulate the process by maintaining the permutation as a list. For each query, find the index of the value, record it, and move the value to the front.
Approach
- Initialize the permutation
Pas[1, 2, ..., m]. - For each query, find the index of the value in
P. - Record the index, remove the value from its position, and insert it at the front.
- Repeat for all queries and return the result.
Code
C++
class Solution {
public:
vector<int> processQueries(vector<int>& queries, int m) {
vector<int> p(m);
iota(p.begin(), p.end(), 1);
vector<int> ans;
for (int q : queries) {
auto it = find(p.begin(), p.end(), q);
int idx = it - p.begin();
ans.push_back(idx);
p.erase(it);
p.insert(p.begin(), q);
}
return ans;
}
};
Go
func processQueries(queries []int, m int) []int {
p := make([]int, m)
for i := 0; i < m; i++ { p[i] = i+1 }
ans := make([]int, len(queries))
for i, q := range queries {
idx := 0
for j, v := range p {
if v == q { idx = j; break }
}
ans[i] = idx
copy(p[1:idx+1], p[0:idx])
p[0] = q
}
return ans
}
Java
class Solution {
public int[] processQueries(int[] queries, int m) {
List<Integer> p = new ArrayList<>();
for (int i = 1; i <= m; ++i) p.add(i);
int[] ans = new int[queries.length];
for (int i = 0; i < queries.length; ++i) {
int idx = p.indexOf(queries[i]);
ans[i] = idx;
p.remove(idx);
p.add(0, queries[i]);
}
return ans;
}
}
Kotlin
class Solution {
fun processQueries(queries: IntArray, m: Int): IntArray {
val p = MutableList(m) { it + 1 }
return queries.map { q ->
val idx = p.indexOf(q)
p.removeAt(idx)
p.add(0, q)
idx
}.toIntArray()
}
}
Python
from typing import List
class Solution:
def processQueries(self, queries: List[int], m: int) -> List[int]:
p = list(range(1, m+1))
ans = []
for q in queries:
idx = p.index(q)
ans.append(idx)
p.pop(idx)
p.insert(0, q)
return ans
Rust
impl Solution {
pub fn process_queries(queries: Vec<i32>, m: i32) -> Vec<i32> {
let mut p: Vec<i32> = (1..=m).collect();
let mut ans = Vec::with_capacity(queries.len());
for q in queries {
let idx = p.iter().position(|&x| x == q).unwrap();
ans.push(idx as i32);
p.remove(idx);
p.insert(0, q);
}
ans
}
}
TypeScript
class Solution {
processQueries(queries: number[], m: number): number[] {
const p = Array.from({length: m}, (_, i) => i+1);
return queries.map(q => {
const idx = p.indexOf(q);
p.splice(idx, 1);
p.unshift(q);
return idx;
});
}
}
Complexity
- ⏰ Time complexity:
O(Q * M), where Q is the number of queries and M is the size of the permutation. Each query may scan up to M elements. - 🧺 Space complexity:
O(M), for the permutation array.