Reshape Data- Pivot
EasyUpdated: Aug 2, 2025
Practice on:
Problem
DataFrame weather +-------------+--------+ | Column Name | Type | +-------------+--------+ | city | object | | month | object | | temperature | int | +-------------+--------+
Write a solution to pivot the data so that each row represents temperatures for a specific month, and each city is a separate column.
The result format is in the following example.
Examples
Example 1
Input:
+--------------+----------+-------------+
| city | month | temperature |
+--------------+----------+-------------+
| Jacksonville | January | 13 |
| Jacksonville | February | 23 |
| Jacksonville | March | 38 |
| Jacksonville | April | 5 |
| Jacksonville | May | 34 |
| ElPaso | January | 20 |
| ElPaso | February | 6 |
| ElPaso | March | 26 |
| ElPaso | April | 2 |
| ElPaso | May | 43 |
+--------------+----------+-------------+
Output:
+----------+--------+--------------+
| month | ElPaso | Jacksonville |
+----------+--------+--------------+
| April | 2 | 5 |
| February | 6 | 23 |
| January | 20 | 13 |
| March | 26 | 38 |
| May | 43 | 34 |
+----------+--------+--------------+
Explanation: The table is pivoted, each column represents a city, and each row represents a specific month.
## Solution
### Method 1 - Pandas Pivot
#### Intuition
We want to pivot the DataFrame so that each city becomes a column and each month is a row, with temperature as the value.
#### Approach
Use pandas `pivot` to reshape the DataFrame, then reset the index and sort by month for a clean output.
#### Code
{{< code_tabs >}}
##### Python (pandas)
```python
def pivot_weather(weather: pd.DataFrame) -> pd.DataFrame:
result = weather.pivot(index='month', columns='city', values='temperature').reset_index()
# Optional: sort by month for consistent output
result = result.sort_values('month').reset_index(drop=True)
return result
Complexity
- ⏰ Time complexity:
O(n)— where n is the number of rows in the DataFrame. - 🧺 Space complexity:
O(n)— for the output DataFrame.