Reverse Bits
EasyUpdated: Sep 18, 2025
Practice on:
Problem
Reverse bits of a given 32 bits unsigned integer.
Note:
- Note that in some languages, such as Java, there is no unsigned integer type. In this case, both input and output will be given as a signed integer type. They should not affect your implementation, as the integer's internal binary representation is the same, whether it is signed or unsigned.
- In Java, the compiler represents the signed integers using 2's complement notation. Therefore, in Example 2 above, the input represents the signed integer
-3and the output represents the signed integer-1073741825.
Examples
Example 1:
Input: n = 00000010100101000001111010011100
Output: 964176192 (00111001011110000010100101000000)
Explanation: The input binary string **00000010100101000001111010011100** represents the unsigned integer 43261596, so return 964176192 which its binary representation is **00111001011110000010100101000000**.
Example 2:
Input: n = 11111111111111111111111111111101
Output: 3221225471 (10111111111111111111111111111111)
Explanation: The input binary string **11111111111111111111111111111101** represents the unsigned integer 4294967293, so return 3221225471 which its binary representation is **10111111111111111111111111111111**.
Follow up
If this function is called many times, how would you optimize it?
Solution
Method 1 - Iterative reversal using left shift and in-place modification
To reverse the bits of a 32-bit unsigned integer:
- Initialise the result as 0.
- Iterate 32 times (once for each bit in the integer).
- In each iteration, shift the result to the left by 1 bit to make room for the next bit.
- Get the least significant bit (LSB) of the input and add it to the result.
- Shift the input to the right by 1 bit to process the next bit.
- Return the result after processing all 32 bits.
Code
Java
public class Solution {
public int reverseBits(int n) {
int ans = 0;
for (int i = 0; i < 32; i++) {
ans <<= 1;
ans |= (n & 1);
n >>= 1;
}
return ans;
}
}
Python
class Solution:
def reverseBits(self, n: int) -> int:
ans: int = 0
for _ in range(32):
ans = (ans << 1) | (n & 1)
n >>= 1
return ans
Complexity
- ⏰ Time complexity:
O(1)because the number of operations is constant and does not depend on the input size. - 🧺 Space complexity:
O(1)as only a fixed amount of extra space is used.
Method 2 - Reversing Bits Using Positional Mapping
Video explanation
Here is the video explaining this method in detail. Please check it out:
<div class="youtube-embed"><iframe src="https://www.youtube.com/embed/U6N0c_GjQJc" frameborder="0" allowfullscreen></iframe></div>
Code
Java
public class Solution {
public int reverseBits(int n) {
int ans = 0;
for (int i = 0; i < 32; i++) {
int bit = (n >> i) & 1;
ans |= (bit << (31 - i));
}
return ans;
}
}
Python
class Solution:
def reverseBits(self, n: int) -> int:
ans = 0
for i in range(32):
bit = (n >> i) & 1 # Extract the bit at position i
ans |= (bit << (31 - i)) # Place it at the reversed position
return ans
Complexity
- ⏰ Time complexity:
O(1) - 🧺 Space complexity:
O(1)
Method 3 - Divide-and-conquer bit masks
Intuition
Reverse the bits by swapping bit-blocks of increasing granularity: first swap every pair of bits, then swap 2-bit groups, then 4-bit groups, and so on. Using constant masks and shifts does a fixed number of operations (log2(word_size) steps) and runs in constant time for fixed-width integers.
Approach
- Treat
xas a 32-bit word. - Apply a sequence of mask-and-shift operations to swap bit-blocks:
- Swap adjacent bits using mask
0x55555555. - Swap 2-bit groups using mask
0x33333333. - Swap 4-bit groups using mask
0x0f0f0f0f. - Swap 8-bit groups using mask
0x00ff00ff. - Swap 16-bit halves.
- Swap adjacent bits using mask
- Return the resulting 32-bit integer.
Edge cases
- If
x == 0the result is0.
Code
C++
class Solution {
public:
uint32_t reverseBits(uint32_t x) {
x = ((x >> 1) & 0x55555555u) | ((x & 0x55555555u) << 1);
x = ((x >> 2) & 0x33333333u) | ((x & 0x33333333u) << 2);
x = ((x >> 4) & 0x0f0f0f0fu) | ((x & 0x0f0f0f0fu) << 4);
x = ((x >> 8) & 0x00ff00ffu) | ((x & 0x00ff00ffu) << 8);
x = (x >> 16) | (x << 16);
return x;
}
};
Go
package main
func reverseBits(x uint32) uint32 {
x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1)
x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2)
x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4)
x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8)
x = (x >> 16) | (x << 16)
return x
}
Java
class Solution {
public int reverseBits(int x) {
int y = x;
y = ((y >>> 1) & 0x55555555) | ((y & 0x55555555) << 1);
y = ((y >>> 2) & 0x33333333) | ((y & 0x33333333) << 2);
y = ((y >>> 4) & 0x0f0f0f0f) | ((y & 0x0f0f0f0f) << 4);
y = ((y >>> 8) & 0x00ff00ff) | ((y & 0x00ff00ff) << 8);
y = (y >>> 16) | (y << 16);
return y;
}
}
Python
class Solution:
def reverse_bits(self, x: int) -> int:
x &= 0xFFFFFFFF
x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1)
x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2)
x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4)
x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8)
x = ((x >> 16) & 0x0000ffff) | ((x & 0x0000ffff) << 16)
return x & 0xFFFFFFFF
Complexity
- ⏰ Time complexity:
O(1), the algorithm performs a fixed number of bitwise operations (5 mask-and-shift steps) on a fixed-size word. - 🧺 Space complexity:
O(1), only constant extra space used.