Robot Bounded In Circle
MediumUpdated: Aug 1, 2025
Practice on:
Problem
On an infinite plane, a robot initially stands at (0, 0) and faces north. Note that:
- The north direction is the positive direction of the y-axis.
- The south direction is the negative direction of the y-axis.
- The east direction is the positive direction of the x-axis.
- The west direction is the negative direction of the x-axis.
The robot can receive one of three instructions:
"G": go straight 1 unit."L": turn 90 degrees to the left (i.e., anti-clockwise direction)."R": turn 90 degrees to the right (i.e., clockwise direction).
The robot performs the instructions given in order, and repeats them forever.
Return true if and only if there exists a circle in the plane such that the robot never leaves the circle.
Examples
Example 1:
Input: instructions = "GGLLGG"
Output: true
Explanation: The robot is initially at (0, 0) facing the north direction.
"G": move one step. Position: (0, 1). Direction: North.
"G": move one step. Position: (0, 2). Direction: North.
"L": turn 90 degrees anti-clockwise. Position: (0, 2). Direction: West.
"L": turn 90 degrees anti-clockwise. Position: (0, 2). Direction: South.
"G": move one step. Position: (0, 1). Direction: South.
"G": move one step. Position: (0, 0). Direction: South.
Repeating the instructions, the robot goes into the cycle: (0, 0) --> (0, 1) --> (0, 2) --> (0, 1) --> (0, 0).
Based on that, we return true.
Example 2:
Input: instructions = "GG"
Output: false
Explanation: The robot is initially at (0, 0) facing the north direction.
"G": move one step. Position: (0, 1). Direction: North.
"G": move one step. Position: (0, 2). Direction: North.
Repeating the instructions, keeps advancing in the north direction and does not go into cycles.
Based on that, we return false.
Example 3:
Input: instructions = "GL"
Output: true
Explanation: The robot is initially at (0, 0) facing the north direction.
"G": move one step. Position: (0, 1). Direction: North.
"L": turn 90 degrees anti-clockwise. Position: (0, 1). Direction: West.
"G": move one step. Position: (-1, 1). Direction: West.
"L": turn 90 degrees anti-clockwise. Position: (-1, 1). Direction: South.
"G": move one step. Position: (-1, 0). Direction: South.
"L": turn 90 degrees anti-clockwise. Position: (-1, 0). Direction: East.
"G": move one step. Position: (0, 0). Direction: East.
"L": turn 90 degrees anti-clockwise. Position: (0, 0). Direction: North.
Repeating the instructions, the robot goes into the cycle: (0, 0) --> (0, 1) --> (-1, 1) --> (-1, 0) --> (0, 0).
Based on that, we return true.
Constraints:
1 <= instructions.length <= 100instructions[i]is'G','L'or,'R'.
Source
Method 1 – Simulate Directions and Check for Cycle
Intuition
The robot moves in a sequence of instructions, turning left or right or moving forward. If, after one cycle of instructions, the robot is back at the origin or is facing a direction other than north, it will stay within a circle when repeating the instructions. Otherwise, it will wander off to infinity.
Approach
- Represent directions as vectors: North
[0,1], East[1,0], South[0,-1], West[-1,0]. - Track the robot's position
(x, y)and direction indexdirIdx(0: North, 1: East, 2: South, 3: West). - For each instruction:
- 'G': Move forward in the current direction.
- 'L': Turn left (dirIdx = (dirIdx + 3) % 4).
- 'R': Turn right (dirIdx = (dirIdx + 1) % 4).
- After one cycle, if the robot is back at the origin or not facing north, it is bounded in a circle.

Code
C++
class Solution {
public:
bool isRobotBounded(string instructions) {
vector<pair<int,int>> dirs = {{0,1},{1,0},{0,-1},{-1,0}}; // N, E, S, W
int x = 0, y = 0, dir = 0;
for (char c : instructions) {
if (c == 'G') {
x += dirs[dir].first;
y += dirs[dir].second;
} else if (c == 'L') {
dir = (dir + 3) % 4;
} else {
dir = (dir + 1) % 4;
}
}
return (x == 0 && y == 0) || dir != 0;
}
};
Go
func isRobotBounded(instructions string) bool {
dirs := [][2]int{{0,1},{1,0},{0,-1},{-1,0}}
x, y, dir := 0, 0, 0
for _, c := range instructions {
if c == 'G' {
x += dirs[dir][0]
y += dirs[dir][1]
} else if c == 'L' {
dir = (dir + 3) % 4
} else {
dir = (dir + 1) % 4
}
}
return (x == 0 && y == 0) || dir != 0
}
Java
class Solution {
public boolean isRobotBounded(String instructions) {
int[][] dirs = new int[][]{{0,1},{1,0},{0,-1},{-1,0}}; // N, E, S, W
int x = 0, y = 0, dir = 0;
for (char c : instructions.toCharArray()) {
if (c == 'G') {
x += dirs[dir][0];
y += dirs[dir][1];
} else if (c == 'L') {
dir = (dir + 3) % 4;
} else {
dir = (dir + 1) % 4;
}
}
return (x == 0 && y == 0) || dir != 0;
}
}
Kotlin
class Solution {
fun isRobotBounded(instructions: String): Boolean {
val dirs = arrayOf(intArrayOf(0,1), intArrayOf(1,0), intArrayOf(0,-1), intArrayOf(-1,0))
var x = 0; var y = 0; var dir = 0
for (c in instructions) {
when (c) {
'G' -> { x += dirs[dir][0]; y += dirs[dir][1] }
'L' -> dir = (dir + 3) % 4
'R' -> dir = (dir + 1) % 4
}
}
return (x == 0 && y == 0) || dir != 0
}
}
Python
class Solution:
def isRobotBounded(self, instructions: str) -> bool:
dirs = [(0,1),(1,0),(0,-1),(-1,0)] # N, E, S, W
x = y = dir = 0
for c in instructions:
if c == 'G':
x += dirs[dir][0]
y += dirs[dir][1]
elif c == 'L':
dir = (dir + 3) % 4
else:
dir = (dir + 1) % 4
return (x == 0 and y == 0) or dir != 0
Rust
impl Solution {
pub fn is_robot_bounded(instructions: String) -> bool {
let dirs = [(0,1),(1,0),(0,-1),(-1,0)];
let (mut x, mut y, mut dir) = (0, 0, 0);
for c in instructions.chars() {
match c {
'G' => { x += dirs[dir].0; y += dirs[dir].1; },
'L' => { dir = (dir + 3) % 4; },
_ => { dir = (dir + 1) % 4; },
}
}
(x == 0 && y == 0) || dir != 0
}
}
TypeScript
class Solution {
isRobotBounded(instructions: string): boolean {
const dirs = [[0,1],[1,0],[0,-1],[-1,0]]; // N, E, S, W
let x = 0, y = 0, dir = 0;
for (const c of instructions) {
if (c === 'G') {
x += dirs[dir][0];
y += dirs[dir][1];
} else if (c === 'L') {
dir = (dir + 3) % 4;
} else {
dir = (dir + 1) % 4;
}
}
return (x === 0 && y === 0) || dir !== 0;
}
}
Complexity
- ⏰ Time complexity:
O(n), wherenis the length of the instructions string. - 🧺 Space complexity:
O(1).