Running Sum of 1d Array
EasyUpdated: Aug 2, 2025
Practice on:
Problem
Given an array nums. We define a running sum of an array as runningSum[i] = sum(nums[0]…nums[i]).
Return the running sum of nums.
Examples
Example 1
Input: nums = [1,2,3,4]
Output: [1,3,6,10]
Explanation: Running sum is obtained as follows: [1, 1+2, 1+2+3, 1+2+3+4].
Example 2
Input: nums = [1,1,1,1,1]
Output: [1,2,3,4,5]
Explanation: Running sum is obtained as follows: [1, 1+1, 1+1+1, 1+1+1+1, 1+1+1+1+1].
Example 3
Input: nums = [3,1,2,10,1]
Output: [3,4,6,16,17]
Constraints
1 <= nums.length <= 1000-10^6 <= nums[i] <= 10^6
Solution
Method 1 - Prefix Sum
Intuition
The running sum is a prefix sum: each element is the sum of all previous elements plus itself. We can compute this in a single pass.
Approach
- Initialize a result array.
- Iterate through nums, keep a running total, and append it to the result.
Code
C++
#include <vector>
using namespace std;
class Solution {
public:
vector<int> runningSum(vector<int>& nums) {
vector<int> res;
int sum = 0;
for (int x : nums) {
sum += x;
res.push_back(sum);
}
return res;
}
};
Go
func runningSum(nums []int) []int {
res := make([]int, len(nums))
sum := 0
for i, x := range nums {
sum += x
res[i] = sum
}
return res
}
Java
class Solution {
public int[] runningSum(int[] nums) {
int[] res = new int[nums.length];
int sum = 0;
for (int i = 0; i < nums.length; ++i) {
sum += nums[i];
res[i] = sum;
}
return res;
}
}
Kotlin
class Solution {
fun runningSum(nums: IntArray): IntArray {
val res = IntArray(nums.size)
var sum = 0
for (i in nums.indices) {
sum += nums[i]
res[i] = sum
}
return res
}
}
Python
def runningSum(nums):
res = []
s = 0
for x in nums:
s += x
res.append(s)
return res
Rust
pub fn running_sum(nums: Vec<i32>) -> Vec<i32> {
let mut res = Vec::with_capacity(nums.len());
let mut sum = 0;
for x in nums {
sum += x;
res.push(sum);
}
res
}
TypeScript
function runningSum(nums: number[]): number[] {
const res: number[] = [];
let sum = 0;
for (const x of nums) {
sum += x;
res.push(sum);
}
return res;
}
Complexity
- ⏰ Time complexity:
O(n) - 🧺 Space complexity:
O(n)