1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
func topSort(graph [][]int, indegree []int) []int {
var queue []int
var result []int
for i, deg := range indegree {
if deg == 0 {
queue = append(queue, i)
}
}
for len(queue) > 0 {
node := queue[0]
queue = queue[1:]
result = append(result, node)
for _, neighbor := range graph[node] {
indegree[neighbor]--
if indegree[neighbor] == 0 {
queue = append(queue, neighbor)
}
}
}
return result
}
func sortItems(n int, m int, group []int, beforeItems [][]int) []int {
// Assign unique group IDs
groupId := m
for i := 0; i < n; i++ {
if group[i] == -1 {
group[i] = groupId
groupId++
}
}
// Build graphs
groupGraph := make([][]int, groupId)
groupIndegree := make([]int, groupId)
itemGraph := make([][]int, n)
itemIndegree := make([]int, n)
for i := 0; i < n; i++ {
for _, prev := range beforeItems[i] {
itemGraph[prev] = append(itemGraph[prev], i)
itemIndegree[i]++
if group[prev] != group[i] {
groupGraph[group[prev]] = append(groupGraph[group[prev]], group[i])
groupIndegree[group[i]]++
}
}
}
// Topological sorts
groupOrder := topSort(groupGraph, groupIndegree)
if len(groupOrder) != groupId {
return []int{}
}
itemOrder := topSort(itemGraph, itemIndegree)
if len(itemOrder) != n {
return []int{}
}
// Group items
groupToItems := make(map[int][]int)
for _, item := range itemOrder {
g := group[item]
groupToItems[g] = append(groupToItems[g], item)
}
// Build result
var result []int
for _, g := range groupOrder {
result = append(result, groupToItems[g]...)
}
return result
}
|