Spiral Matrix 1 - Return
Problem
Problem
Given an m x n matrix, return all elements of the matrix in spiral order.
Examples
Example 1:
Input: matrix = [
[ 1, 2, 3 ],
[ 4, 5, 6 ],
[ 7, 8, 9 ]
]
Output: [1,2,3,6,9,8,7,4,5]
Example 2:
Input: matrix =[[1,2,3,4],[5,6,7,8],[9,10,11,12]]
Output: [1,2,3,4,8,12,11,10,9,5,6,7]
Constraints
m == matrix.lengthn == matrix[i].length1 <= m, n <= 10-100 <= matrix[i][j] <= 100
Follow Up
[Spiral Matrix 2 - Generate](spiral-matrix-2-generate)
Similar Problems
- [Spiral Matrix 2 - Generate](spiral-matrix-2-generate)
- [Spiral Matrix 3 - Traverse from Given Starting Point](spiral-matrix-3-traverse-from-given-starting-point)
- [Spiral Matrix 4 - From Linked List](spiral-matrix-4-from-linked-list)
Solution
Video explanation
Here is the video explaining below methods in detail. Please check it out:
<div class="youtube-embed"><iframe src="https://www.youtube.com/embed/u8XW5cR5djA" frameborder="0" allowfullscreen></iframe></div>
Method 1 - Iterative just checking boundaries
We have 4 boundaries - left, right, top and bottom. We now have to loop from left to right, then top to bottom, then right to left and bottom to top. Each time, we change direction, we update respective boundary.

Also, we can run the loop in 2 ways:
while(left < right && top < bottom)
OR
while(ans.size() < m*n)
In the code below, we are using former, but any of the conditions will work.
Code
Java
public class Solution {
public List<Integer> spiralOrder(int[][] matrix) {
List<Integer> ans = new ArrayList<>();
// Define boundaries
int top = 0;
int bottom = matrix.length - 1;
int left = 0;
int right = matrix[0].length - 1;
while (top <= bottom && left <= right) {
// Traverse top row from left to right
for (int j = left; j <= right; j++) {
ans.add(matrix[top][j]);
}
top++;
// Traverse right column from top to bottom
for (int i = top; i <= bottom; i++) {
ans.add(matrix[i][right]);
}
right--;
// Traverse bottom row from right to left (if within bounds)
if (top > bottom || left > right) {
break;
}
for (int j = right; j >= left; j--) {
ans.add(matrix[bottom][j]);
}
bottom--;
// Traverse left column from bottom to top (if within bounds)
for (int i = bottom; i >= top; i--) {
ans.add(matrix[i][left]);
}
left++;
}
return ans;
}
}
Python
class Solution:
def spiralOrder(self, matrix: list[list[int]]) -> list[int]:
ans: list[int] = []
top: int = 0
bottom: int = len(matrix) - 1
left: int = 0
right: int = len(matrix[0]) - 1
while top <= bottom and left <= right:
for j in range(left, right + 1):
ans.append(matrix[top][j])
top += 1
for i in range(top, bottom + 1):
ans.append(matrix[i][right])
right -= 1
if top > bottom or left > right:
break
for j in range(right, left - 1, -1):
ans.append(matrix[bottom][j])
bottom -= 1
for i in range(bottom, top - 1, -1):
ans.append(matrix[i][left])
left += 1
return ans
Complexity
- ⏰ Time complexity:
O(m*n)wheremis number of rows andnis number of columns. - 🧺 Space complexity:
O(1)
Method 2 - Iterative checking boundaries with stopping condition as element count
Same as method 1 with the stopping condition based on element count.
Code
Java
class Solution {
public List<Integer> spiralOrder(int[][] matrix) {
List<Integer> ans = new ArrayList<Integer> ();
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return ans;
}
int m = matrix.length;
int n = matrix[0].length;
int left = 0;
int right = n - 1;
int top = 0;
int bottom = m - 1;
while (ans.size() < m * n) {
for (int i = left; i<= right; i++) {
ans.add(matrix[top][i]);
}
top++;
for (int i = top; i<= bottom; i++) {
ans.add(matrix[i][right]);
}
right--;
//prevent duplicate row
if (top <= bottom) {
for (int i = right; i >= left; i--) {
ans.add(matrix[bottom][i]);
}
bottom--;
}
// prevent duplicate column
if (left <= right) {
for (int i = bottom; i >= top; i--) {
ans.add(matrix[i][left]);
}
left++;
}
}
return ans;
}
}
Method 3 - Iterative with direction and switch case
Code
Java
class Solution {
public List<Integer> spiralOrder(int[][] matrix) {
List<Integer> ans = new ArrayList<>();
if (matrix.length == 0 || matrix[0].length == 0) {
return ans;
}
int top = 0;
int bottom = matrix.length - 1;
int left = 0;
int right = matrix[0].length - 1;
int dir = 0; // we go right, down, left, top
while (top <= bottom && left <= right) {
switch (dir) {
case 0: // Right
for (int i = left; i <= right; i++) {
result.add(matrix[top][i]);
}
top++;
break;
case 1: // Down
for (int i = top; i <= bottom; i++) {
result.add(matrix[i][right]);
}
right--;
break;
case 2: // Left
for (int i = right; i >= left; i--) {
result.add(matrix[bottom][i]);
}
bottom--;
break;
case 3: // Top
for (int i = bottom; i >= top; i--) {
result.add(matrix[i][left]);
}
left++;
}
dir = (dir + 1) % 4;
}
return result;
}
}
Complexity
- ⏰ Time complexity:
O(m*n) - 🧺 Space complexity:
O(1)
Method 4 - Recursive
Here is the logic:
- Start printing from first row.
- Print row and columns, forward and backward alternatively
- With every iteration of (either row or column), reduce the size of an row or column by 1
- Call recursively
We can also recursively solve this problem. The solution's performance is not better than Solution 1. Therefore, Solution 1 should be preferred.
Code
Java
class Solution {
public List<Integer> spiralOrder(int[][] matrix) {
List<Integer> ans = new ArrayList<Integer>();
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return ans;
}
helper(matrix, 0, matrix.length - 1, 0, matrix[0].length - 1, ans);
return ans;
}
private void helper(int[][] matrix, int r1, int r2, int c1, int c2, List<Integer> ans) {
if (r1 > r2 || c1 > c2) {
return;
}
// right
for (int c = c1; c <= c2; c++) {
ans.add(matrix[r1][c]);
}
// down
for (int r = r1 + 1; r <= r2; r++) {
ans.add(matrix[r][c2]);
}
// if already processed
if (r1 == r2 || c1 == c2) return;
// left
for (int c = c2 - 1; c >= c1; c--) {
ans.add(matrix[r2][c]);
}
// top
for(int r = r2 - 1; r >= r1 + 1; r--) {
ans.add(matrix[r][c1]);
}
helper(matrix, r1 + 1, r2 - 1, c1 + 1, c2 - 1, ans);
}
}
Complexity
- ⏰ Time complexity:
O(m*n) - 🧺 Space complexity:
O(1)