Problem
Given an integer array nums
that may contain duplicates, return all possible subsets (the power set).
The solution set must not contain duplicate subsets. Return the solution in any order.
Examples
Example 1:
Input:
nums = [1,2,2]
Output:
[[],[1],[1,2],[1,2,2],[2],[2,2]]
Example 2:
Input:
nums = [0]
Output:
[[],[0]]
This is follow up from: Subsets
Solution
Method 1 - Backtracking
In this case we have to sort the array, as it is easy to compare if elements are duplicate by just looking at adjacent places.
Thought Process 1 - Focus One Element at Each Level
Each recursion level focuses on one element, we need to decide choose or not choose this element. (Every level split into 2 branches.)
public List<List<Integer>> subsetsWithDup(int[] nums) {
Arrays.sort(nums);
List<List<Integer>> ans = new ArrayList<>();
dfs(nums, 0, ans, new ArrayList<>());
return ans;
}
public void dfs(int[] nums, int idx, List<List<Integer>> ans, List<Integer> subAns) {
if (idx >= nums.length){
ans.add(new ArrayList<>(subAns));
return;
}
// include the number in the set
subAns.add(nums[idx]);
dfs(nums, idx+1, ans, subAns);
// don't include the number in the set
subAns.remove(subAns.size() - 1);
//we will not add all the following same element, just jump to the index where nums[index] is a different value
int i = idx;
while(i < nums.length && nums[i] == nums[index]){
i++;
}
dfs(nums, i, ans, subAns);
}
another flavour is use flag choosePre
:
public List < List<Integer>> subsetsWithDup(int[] nums) {
Arrays.sort(nums);
List < List<Integer>> ans = new ArrayList<>();
helper(nums, 0, false, ans, new ArrayList<>());
return ans;
}
public void helper(int[] nums, int pos, boolean choosePre, List < List<Integer>> ans, List<Integer> subAns) {
if (pos == nums.length) {
ans.add(new ArrayList<>(subAns));
return;
}
helper(nums, idx + 1, false, ans, subAns);
if (idx >= 1 && nums[idx] == nums[idx - 1] && !choosePre) return;
subAns.add(nums[idx]);
helper(nums, idx + 1, true, ans, subAns);
subAns.remove(subAns.size() - 1);
}
Thought Process 2 - Focus on All the Following Elements at Each Level
Each recursion level focuses on all the following elements. We scan through all the following elements and decide whether to choose or not choose that element. (Every level split into N branches.)
public List<List<Integer>> subsetsWithDup(int[] nums) {
Arrays.sort(nums);
List<List<Integer>> ans = new ArrayList<>();
helper(nums, 0, ans, new ArrayList<>());
return res;
}
public void helper(int[] nums, int idx, List<List<Integer>> ans, List<Integer> subAns) {
ans.add(new ArrayList<>(subAns));
for (int i = idx; i<nums.length; i++) {
if (i > idx && nums[i] == nums[i - 1]) continue;
subAns.add(nums[i]);
helper(nums, i + 1, ans, ls);
subAns.remove(ls.size() - 1);
}
}
Method 2 - Iterative
If we want to insert an element which is a dup, we can only insert it after the newly inserted elements from last step.
public List<List<Integer>> subsetsWithDup(int[] nums) {
Arrays.sort(nums);
List<List<Integer>> ans = new ArrayList<>();
ans.add(new ArrayList<Integer>());
int size = 0, startIndex;
for(int i = 0; i < nums.length; i++) {
startIndex = (i >= 1 && nums[i] == nums[i - 1]) ? size : 0;
size = ans.size();
for(int j = startIndex; j < size; j++) {
List<Integer> temp = new ArrayList<>(ans.get(j));
temp.add(nums[i]);
ans.add(temp);
}
}
return ans;
}