You are given a 0-indexed integer array nums consisting of n non-negative integers.
You are also given an array queries, where queries[i] = [xi, yi]. The answer to the ith query is the sum of all nums[j] where xi <= j < n and
(j - xi) is divisible by yi.
Return an arrayanswerwhereanswer.length == queries.lengthandanswer[i]is the answer to theith _querymodulo _109 + 7.
Input: nums =[0,1,2,3,4,5,6,7], queries =[[0,3],[5,1],[4,2]]Output: [9,18,10]Explanation: The answers of the queries are as follows:1) The j indices that satisfy this query are 0,3, and 6. nums[0]+ nums[3]+ nums[6]=92) The j indices that satisfy this query are 5,6, and 7. nums[5]+ nums[6]+ nums[7]=183) The j indices that satisfy this query are 4 and 6. nums[4]+ nums[6]=10
For each query [xi, yi], sum all nums[j] where j >= xi and (j - xi) % yi == 0. For small yi, we can precompute prefix sums for each possible remainder. For large yi, we can process each query directly. A hybrid approach is used for efficiency.
#include<vector>usingnamespace std;
classSolution {
public: vector<int> solve(vector<int>& nums, vector<vector<int>>& queries) {
constint MOD =1e9+7, n = nums.size(), Q = queries.size(), B =224;
vector<int> res(Q);
vector<vector<long>> presum(B, vector<long>(B));
for (int y =1; y < B; ++y) {
for (int r =0; r < y; ++r) {
long sum =0;
for (int i = r; i < n; i += y) sum = (sum + nums[i]) % MOD;
presum[y][r] = sum;
}
}
for (int qi =0; qi < Q; ++qi) {
int x = queries[qi][0], y = queries[qi][1];
if (y < B) {
res[qi] = presum[y][x % y];
if (x % y > x) res[qi] =0;
else {
int first = x;
int last = (n-1) - ((n-1-x)%y);
if (first > last) res[qi] =0;
}
} else {
long sum =0;
for (int i = x; i < n; i += y) sum = (sum + nums[i]) % MOD;
res[qi] = sum;
}
}
return res;
}
};
import java.util.*;
classSolution {
publicint[]solve(int[] nums, int[][] queries) {
int MOD = 1_000_000_007, n = nums.length, Q = queries.length, B = 224;
int[] res =newint[Q];
long[][] presum =newlong[B][B];
for (int y = 1; y < B; ++y) {
for (int r = 0; r < y; ++r) {
long sum = 0;
for (int i = r; i < n; i += y) sum = (sum + nums[i]) % MOD;
presum[y][r]= sum;
}
}
for (int qi = 0; qi < Q; ++qi) {
int x = queries[qi][0], y = queries[qi][1];
if (y < B) {
res[qi]= (int)presum[y][x % y];
} else {
long sum = 0;
for (int i = x; i < n; i += y) sum = (sum + nums[i]) % MOD;
res[qi]= (int)sum;
}
}
return res;
}
}
classSolution {
funsolve(nums: IntArray, queries: Array<IntArray>): IntArray {
val MOD = 1_000_000_007
val n = nums.size
val Q = queries.size
val B = 224val res = IntArray(Q)
val presum = Array(B) { LongArray(B) }
for (y in1 until B) {
for (r in0 until y) {
var sum = 0Lvar i = r
while (i < n) {
sum = (sum + nums[i]) % MOD
i += y
}
presum[y][r] = sum
}
}
for (qi in0 until Q) {
val x = queries[qi][0]
val y = queries[qi][1]
if (y < B) {
res[qi] = presum[y][x % y].toInt()
} else {
var sum = 0Lvar i = x
while (i < n) {
sum = (sum + nums[i]) % MOD
i += y
}
res[qi] = sum.toInt()
}
}
return res
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
classSolution:
defsolve(self, nums: list[int], queries: list[list[int]]) -> list[int]:
MOD =10**9+7 n, Q, B = len(nums), len(queries), 224 presum = [[0]*B for _ in range(B)]
for y in range(1, B):
for r in range(y):
presum[y][r] = sum(nums[i] for i in range(r, n, y)) % MOD
res = [0]*Q
for qi, (x, y) in enumerate(queries):
if y < B:
res[qi] = presum[y][x % y]
else:
res[qi] = sum(nums[i] for i in range(x, n, y)) % MOD
return res
impl Solution {
pubfnsolve(nums: Vec<i32>, queries: Vec<Vec<i32>>) -> Vec<i32> {
constMOD: i64=1_000_000_007;
let n = nums.len();
let q = queries.len();
let b =224;
letmut presum =vec![vec![0i64; b]; b];
for y in1..b {
for r in0..y {
letmut sum =0i64;
letmut i = r;
while i < n {
sum = (sum + nums[i] asi64) %MOD;
i += y;
}
presum[y][r] = sum;
}
}
letmut res =vec![0i32; q];
for (qi, qr) in queries.iter().enumerate() {
let x = qr[0] asusize;
let y = qr[1] asusize;
if y < b {
res[qi] = presum[y][x % y] asi32;
} else {
letmut sum =0i64;
letmut i = x;
while i < n {
sum = (sum + nums[i] asi64) %MOD;
i += y;
}
res[qi] = sum asi32;
}
}
res
}
}