Problem#
You are given two positive integers n
and k
. A factor of an integer n
is defined as an integer i
where n % i == 0
.
Consider a list of all factors of n
sorted in ascending order , return thekth
factor in this list or return -1
if n
has less than k
factors.
Examples#
Example 1#
1
2
3
|
Input: n = 12, k = 3
Output: 3
Explanation: Factors list is [1, 2, 3, 4, 6, 12], the 3rd factor is 3.
|
Example 2#
1
2
3
|
Input: n = 7, k = 2
Output: 7
Explanation: Factors list is [1, 7], the 2nd factor is 7.
|
Example 3#
1
2
3
|
Input: n = 4, k = 4
Output: -1
Explanation: Factors list is [1, 2, 4], there is only 3 factors. We should return -1.
|
Constraints#
Follow up:
Could you solve this problem in less than O(n) complexity?
Solution#
Method 1 - Brute Force (O(n))#
Loop from 1 to n, collect all factors, and return the kth if it exists.
Code#
1
2
3
4
5
6
7
8
9
|
int kthFactor(int n, int k) {
for (int i = 1; i <= n; ++i) {
if (n % i == 0) {
--k;
if (k == 0) return i;
}
}
return -1;
}
|
1
2
3
4
5
6
7
8
9
10
11
|
class Solution {
public int kthFactor(int n, int k) {
for (int i = 1; i <= n; ++i) {
if (n % i == 0) {
--k;
if (k == 0) return i;
}
}
return -1;
}
}
|
1
2
3
4
5
6
7
|
def kthFactor(n: int, k: int) -> int:
for i in range(1, n+1):
if n % i == 0:
k -= 1
if k == 0:
return i
return -1
|
1
2
3
4
5
6
7
8
9
10
11
12
|
pub fn kth_factor(n: i32, k: i32) -> i32 {
let (mut count, mut k) = (0, k);
for i in 1..=n {
if n % i == 0 {
k -= 1;
if k == 0 {
return i;
}
}
}
-1
}
|
1
2
3
4
5
6
7
8
9
|
function kthFactor(n: number, k: number): number {
for (let i = 1; i <= n; ++i) {
if (n % i === 0) {
--k;
if (k === 0) return i;
}
}
return -1;
}
|
Complexity#
- ⏰ Time complexity:
O(n)
- 🧺 Space complexity:
O(1)