Problem
Given an m x n
matrix
, return true
if the matrix is Toeplitz. Otherwise, return false
.
A matrix is Toeplitz if every diagonal from top-left to bottom-right has the same elements.
Examples
Example 1:
$$ \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 1 & 2 & 3 \\ 9 & 5 & 1 & 2 \end{bmatrix} $$
Input: matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]]
Output: true
Explanation:
In the above grid, the diagonals are:
"[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", "[3, 3]", "[4]".
In each diagonal all elements are the same, so the answer is True.
Example 2: $$ \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} $$
Input: matrix = [[1,2],[2,2]]
Output: false
Explanation:
The diagonal "[1, 2]" has different elements.
Solution
Method 1 - Iteration
We can iterate through each element in the matrix (except the last row and last column) and checks if the current element matrix[i][j]
is equal to the element to its bottom-right diagonal matrix[i+1][j+1]
. If any elements do not match, it returns False
. If all elements match the condition, it returns True
.
Code
Java
public boolean isToeplitzMatrix(int[][] matrix) {
for (int i = 0; i < matrix.length - 1; i++) {
for (int j = 0; j < matrix[i].length - 1; j++) {
if (matrix[i][j] != matrix[i + 1][j + 1]) {
return false;
}
}
}
return true;
}
Python
def is_toeplitz_matrix(matrix):
for i in range(len(matrix) - 1):
for j in range(len(matrix[i]) - 1):
if matrix[i][j] != matrix[i + 1][j + 1]:
return False
return True
Complexity
- ⏰ Time complexity:
O(m * n)
, wherem
is the number of rows andn
is the number of columns in the matrix. The function iterates through nearly all elements of the matrix once. - 🧺 Space complexity:
O(1)
, The space complexity is constant because no additional space proportional to the input size is used. The function only uses a fixed amount of extra space for variablesi
andj
.