Problem#
Write a program to check whether a given number is an ugly number.
Ugly Number Definition
Examples#
Example 1:
1
2
3
Input: n = 6
Output: true
Explanation: 6 = 2 × 3
Example 2:
1
2
3
Input: n = 1
Output: true
Explanation: 1 has no prime factors, therefore all of its prime factors are limited to 2, 3, and 5.
Example 3:
1
2
3
Input: n = 14
Output: false
Explanation: 14 is not ugly since it includes the prime factor 7.
Similar Problems#
Solution#
Video Explanation#
Here is the video explanation:
VIDEO
Method 1 - Recursive Solution#
Code#
Java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
public boolean isUgly (int num) {
if (num <= 0) {
return false ;
}
if (num == 1) {
return true ;
}
if (num % 2 == 0) {
num = num / 2;
return isUgly(num);
}
if (num % 3 == 0) {
num = num / 3;
return isUgly(num);
}
if (num % 5 == 0) {
num = num / 5;
return isUgly(num);
}
return false ;
}
Complexity#
⏰ Time complexity: $O(log_2n)$
🧺 Space complexity: $O(1)$
Each division by 2 reduces the number by half. It takes approximately $log_{2}n$ divisions to reduce num
to 1 when dividing by 2. For eg. number 2^32, then we have to divide 32 times by 2. Likewise, it takes $log_{3}n$ and $log_{5}n$ divisions to reduce num
to 1 when dividing by 3 and 5. So, in worst case it will be $log_{2}n$.
Method 2 - Iterative Solution#
Code#
Java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public boolean isUgly (int n) {
if (n <= 0) {
return false ;
}
if (n == 1) {
return true ;
}
int [] primes = {2,3,5};
for (int p: primes){
while (n % p == 0){
n = n / p;
}
}
return n == 1;
}
Complexity#
⏰ Time complexity: $O(log_2n)$
🧺 Space complexity: $O(1)$