XOR Operation in an Array
EasyUpdated: Aug 2, 2025
Practice on:
Problem
You are given an integer n and an integer start.
Define an array nums where nums[i] = start + 2 * i (0-indexed) and n == nums.length.
Return the bitwise XOR of all elements of nums.
Examples
Example 1
Input: n = 5, start = 0
Output: 8
Explanation: Array nums is equal to [0, 2, 4, 6, 8] where (0 ^ 2 ^ 4 ^ 6 ^ 8) = 8.
Where "^" corresponds to bitwise XOR operator.
Example 2
Input: n = 4, start = 3
Output: 8
Explanation: Array nums is equal to [3, 5, 7, 9] where (3 ^ 5 ^ 7 ^ 9) = 8.
Constraints
1 <= n <= 10000 <= start <= 1000n == nums.length
Solution
Method 1 – Simple Iterative XOR
Intuition
The problem asks for the XOR of a sequence where each element is start + 2*i. XOR is associative and commutative, so we can compute the result by iterating through the sequence and applying XOR step by step.
Approach
- Initialize ans = 0.
- For i from 0 to n-1:
- Compute val = start + 2*i.
- ans ^= val.
- Return ans.
Code
C++
class Solution {
public:
int xorOperation(int n, int start) {
int ans = 0;
for (int i = 0; i < n; ++i) {
ans ^= start + 2 * i;
}
return ans;
}
};
Go
func xorOperation(n int, start int) int {
ans := 0
for i := 0; i < n; i++ {
ans ^= start + 2*i
}
return ans
}
Java
class Solution {
public int xorOperation(int n, int start) {
int ans = 0;
for (int i = 0; i < n; i++) {
ans ^= start + 2 * i;
}
return ans;
}
}
Kotlin
class Solution {
fun xorOperation(n: Int, start: Int): Int {
var ans = 0
for (i in 0 until n) {
ans = ans xor (start + 2 * i)
}
return ans
}
}
Python
class Solution:
def xorOperation(self, n: int, start: int) -> int:
ans = 0
for i in range(n):
ans ^= start + 2 * i
return ans
Rust
impl Solution {
pub fn xor_operation(n: i32, start: i32) -> i32 {
let mut ans = 0;
for i in 0..n {
ans ^= start + 2 * i;
}
ans
}
}
TypeScript
class Solution {
xorOperation(n: number, start: number): number {
let ans = 0;
for (let i = 0; i < n; i++) {
ans ^= start + 2 * i;
}
return ans;
}
}
Complexity
- ⏰ Time complexity:
O(n)— We compute n values and XOR them. - 🧺 Space complexity:
O(1)— Only a constant amount of extra space is used.